【YOLOv8】Yolov5和Yolov8网络结构的分析与对比

本文对比分析了YOLOv5和YOLOv8的目标检测网络结构,包括Input、Backbone、Neck和Head部分。YOLOv8在Backbone中使用C2f模块替代C3,Neck部分简化了上采样结构,Head部分采用解耦头设计,Loss计算方面引入了Task-Aligned Assigner和新型损失函数。这些改进旨在实现模型轻量化和性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一 YOLOv5

二 YOLOv8


yolo通常采用backbone-neck-head的网络结构。

  1. Backbone 主要负责从输入图像中提取高层次的语义特征,常包含多个卷积层和池化层,构建了一个深层次的特征提取器。
  2. Neck通常用来进一步整合与调整backbone提取的特征,有利于将不同层次的特征融合进而提升网络对目标的感知能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值