【YOLOv9改进[注意力]】在YOLOv9中使用坐标注意力CoordAtt的实践 + 含全部代码和详细修改方式

### YOLOv7 中坐标注意力机制的实现与应用 #### 坐标注意力机制概述 坐标注意力(Coordinate Attention, CoordAtt)是一种新型的注意力机制,旨在解决传统通道注意力机制忽略位置信息的问题。通过将通道注意力分解为两个1D特征编码过程,分别沿高度宽度方向聚合特征,CoordAtt能够捕捉远程依赖关系并保留精确的位置信息[^3]。 #### 实现细节 为了在YOLOv7中集成CoordAtt模块,主要涉及以下几个方面: - **特征映射处理**:给定输入特征图 \( F \in R^{C\times H\times W} \),其中\( C \)是通道数,\( H \)\( W \)分别是高度宽度。首先将其重塑成适合进行一维操作的形式。 - **分离维度上的全局池化**:不同于常规的2D全局平均/最大池化,这里采用沿着特定轴执行的一维版本来获取每行或列的最大响应值作为代表性的描述子。 - **线性变换层**:对上述得到的结果施加全连接层或其他形式的投影函数,以降低维度并将输出调整至适当大小以便后续拼接回原始形状。 - **激活函数与缩放因子计算**:利用Sigmoid等非线性单元生成最终的权重系数矩阵,并乘回到原特征上完成增强效果。 具体来说,在PyTorch框架下可按照如下方式定义`CoordAttention`类: ```python import torch.nn as nn from functools import partial class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): return x * self.sigmoid(x) def conv_1x1_bn(in_channels, out_channels): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1), nn.BatchNorm2d(out_channels), h_swish() ) class CoordAttention(nn.Module): def __init__(self, inp, oup, reduction=32): super(CoordAttention, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x n, c, h, w = x.size() # 对高宽两维度分别做自适应均值池化 x_h = self.pool_h(x).permute(0, 1, 3, 2) x_w = self.pool_w(x) y = torch.cat([x_h, x_w], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid().unsqueeze(-1) a_w = self.conv_w(x_w).sigmoid().unsqueeze(-2) out = identity * a_h * a_w return out ``` 此代码片段展示了如何构建一个简单的CoordAttention模块,并可以在YOLOv7架构中的任何地方插入该组件来进行实验测试。 #### 应用场景 当应用于目标检测任务时,特别是在轻量化模型如YOLOv7 Tiny变体中加入CoordAtt能显著提高小物体识别精度以及整体mAP指标。这是因为更好的空间定位能力有助于网络更加关注图像中有意义的部分而不是背景噪声区域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackilina_Stone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值