使用DeepSeek R1大模型编写迅投 QMT 的量化交易 Python 代码

随着人工智能技术的迅猛发展,利用AI工具提升工作效率已成为现代开发者的重要手段。

在使用deepseek官方网页生成迅投QMT代码的时候,deepseek给出的代码是xtquant代码,也就是miniqmt代码,并不是我们传统意义上说的大QMT可用的代码。

因此,我们需要自建一个知识库,让deepseek根据我的知识库里面的知识,去帮我生成大QMT可用的交易代码。

一、建立迅投QMT的知识库

建立迅投QMT的知识库的方法比较简单,我们就直接访问迅投QMT的官方网站,把网站上的网页内容打印成PDF文件,我这边有一个打印下来的PDF文件可以下载(注意我打印的日期是2025年2月25日,后续迅投网站可能会更新),大家也可以自己去网站上打印。

下载链接:

https://download.csdn.net/download/wtsolutions/90427490

二、利用腾讯ima.copilot建立与deepseek的知识库

1、下载与安装 IMA.Copilot

2.   导入PDF文件到个人知识库

  1. 在 IMA.Copilot 中,点击左侧导航栏的“知识库”选项。
  2. 选择“导入文档”,上传你的迅投QMT PDF文件。
  3. 等待系统处理并索引文档内容。

三、使用 IMA.Copilot 编写量化交易 Python 代码

在个人知识库页面,下面有一个输入窗口,可以在此处提问,此处提问可以是直接基于知识库知识来回答的。

举例说明:

“请根据迅投QMT的PDF文档,编写一个计算股票移动平均线的Python函数。”

IMA.Copilot 将结合 DeepSeek R1 大模型和你的知识库内容,自动生成相应的Python代码。以下就是deepseek给出的代码。

#coding:gbk
import numpy as np

def calculate_ma(ContextInfo, stock_code, window_size):
    """
    计算指定股票的移动平均线
    :param ContextInfo: QMT上下文对象[1](@ref)
    :param stock_code: 股票代码(格式:'000001.SZ')[1](@ref)
    :param window_size: 均线周期
    :return: MA值(浮点数)
    """
    # 获取本地收盘价数据
    local_data = ContextInfo.get_market_data_ex(
        ['close'], 
        [stock_code],
        period='1d',
        count=window_size,
        subscribe=False
    )
    
    # 提取收盘价列表
    try:
        close_prices = local_data[stock_code]['close'].values
    except KeyError:
        print(f"未找到股票{stock_code}的收盘数据")
        return None
    
    # 计算移动平均
    if len(close_prices) >= window_size:
        ma_value = np.mean(close_prices[-window_size:])
        return round(ma_value, 2)
    else:
        print(f"数据不足,当前数据量{len(close_prices)},需要{window_size}根K线")
        return None

# 使用示例(在策略中调用)
def handlebar(C):
    stock = "600000.SH"
    ma10 = calculate_ma(C, stock, 10)  # 计算10日均线
    ma20 = calculate_ma(C, stock, 20)  # 计算20日均线
    print(f"{stock} 10日均线:{ma10},20日均线:{ma20}")

def init(C):
    # 下载所需历史数据(建议在策略初始化时执行)
    C.download_history_data("600000.SH", "1d", "", "")

四、检查测试

生成的代码可能需要根据具体需求进行调整和优化。

特别注意:AI生成的内容,不能保证是100%准确的,大家务必人工检查确认代码的正确性。

通过本文的介绍,如何使用腾讯 IMA.Copilot 结合 DeepSeek R1 大模型,从个人知识库中的迅投QMT PDF文件编写量化交易的Python代码。这一流程不仅提高了代码编写的效率,还大大提升了代码的质量和准确性。

未来,随着AI技术的不断进步,我们有理由相信,量化交易将变得更加智能化和高效化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值