拉盖尔多项式的生成函数

拉盖尔多项式

\large L_n(x)=e^x\large \frac{d^n}{dx^n}(x^ne^{-x})

的生成函数为:

\large \begin{align*} g(x,z)&={\mathop{\rm exp}\nolimits \left({-{xz\over 1-z}}\right)\over 1-z}\nonumber\\ \end{align*}

证明:

根据 柯西积分公式(Cauchy Integral formula)

f^{(n)}(z)=\frac{n!}{2\pi i}\oint_C \frac{f(\zeta )}{\left ( \zeta -z \right )^{n+1}}d\zeta                               (1)                      

C 是逆时针绕点 z 的闭合曲线。通过代换 f(\zeta )=e^{-\zeta}\zeta ^n, 可以得到拉盖尔多项式:

L_n(z)=\frac{n!}{2\pi i}\oint _C\frac{e^ze^{-\zeta} \zeta ^n}{\left ( \zeta -z \right )^{n+1}}d\zeta=\frac{n!}{2\pi i}\oint _C\frac{e^ze^{-\zeta} }{ ( 1-\frac{z}{\zeta} )^{n} ( \zeta -z )}d\zeta

进行变量代换:

\zeta-z:=\frac{zt}{1-t},\hspace{1em} \zeta =\frac{z}{1-t},\hspace{1em} t=1-\frac{z}{\zeta },\hspace{1em} d\zeta =\frac{zdt}{(1-t)^2},\hspace{1em}

得到

L_n(z)=\frac{n!}{2\pi i}\oint_{C'} \frac{e^\frac{-zt}{1-t}zdt}{ (1-t )^2t^n\cdot \frac{-zt}{1-t}}=\frac{n!}{2\pi i}\oint_{C'} \frac{e^\frac{-zt}{1-t}dt}{ (1-t )t^{n+1}}

C‘ 是逆时针绕 0 点的闭合曲线。令

 f(t)= \frac{e^\frac{-zt}{1-t}}{ (1-t )}

得到

L_n(z)=f^{(n)}(t=0)=\frac{d^n}{dt^n}\left [ \frac{e^\frac{-zt}{1-t}}{ (1-t )} \right ] _{t=0}

 因此可以得到生成函数:

\frac{e^\frac{-zt}{1-t}}{ (1-t )} = \sum_{n=0}^\infty\frac{L_n(z)}{n!}t^n.

注意到进行 n 次对 t 求导并令 t 为 0 后,只有 n 次方的系数项 除以 n!。

证明结束。

参考:generating function of Laguerre polynomials

证明柯西积分公式(Cauchy Integral formula)

f^{(n)}(z)=\frac{n!}{2\pi i}\oint_C \frac{f(\zeta )}{\left ( \zeta -z \right )^{n+1}}d\zeta                                    

证明:

先证明

f(z)=\frac{1}{2\pi i}\oint_C \frac{f(\zeta )}{\left ( \zeta -z \right )}d\zeta                                           (2)

   根据柯西定理,连通域内积分与路径无关。选取积分路径为绕 z 的半径为 r 的圆。令  \zeta = z+re^{i \theta }

 \frac{1}{2\pi i}\oint_C \frac{f(\zeta )}{\left ( \zeta -z \right )}d\zeta= \frac{1}{2\pi i}\int_0^{2\pi } \frac{f(z+re^{i\theta } )}{ re^{i\theta } } ri e^{i\theta }d\theta =\frac{1}{2\pi }\int_0^{2\pi }{f(z+re^{i\theta } )}d\theta

当 r 趋于 0 时,

f(z+re^{i\theta } )\underset{r=0}{\rightarrow} f(z)

\frac{1}{2\pi }\int_0^{2\pi }{f(z+re^{i\theta } )}d\theta=f(z)

(2) 得证。

通过相同的变量代换和分部积分得到

\begin{align*} \oint_C \frac{f(\zeta )}{(\zeta -z)^{n+1}}d\zeta &=\oint_{C'} \frac{f(z+re^{i\theta } )}{( re^{i\theta } )^{n+1}}d(re^{i\theta } ) \\ &=-\frac{1}{n}\oint_{C'}{f(z+re^{i\theta } )}d( re^{i\theta } )^{-n}\\ &=\frac{1}{n}\oint_{C'} (re^{i\theta } )^{-n}d{f(z+re^{i\theta } )}\\ &=\frac{1}{n!}\int_0^{2\pi} \frac{f^{(n)}(z+re^{i\theta } )}{re^{i\theta}}i d\theta \\ &=\frac{2\pi i }{n!}f^{(n)}(z) \end{align*}

柯西积分公式得证。

关于连通域内积分路径无关,需要应用柯西-黎曼方程,和格林公式。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值