PointNet 代码阅读笔记

PointNet 代码阅读笔记

代码地址:https://github.com/fxia22/pointnet.pytorch

论文笔记看这篇笔记

1. T-Net

先来看看T-Net的网络结构:
在这里插入图片描述

(1) Input transform

The first transformation network is a mini-PointNet that takes raw point cloud as input and regresses to a 3 × 3 matrix. It’s composed of a shared MLP (64; 128; 1024) network (with layer output sizes 64, 128, 1024) on each point, a max pooling across points and two fully connected layers with output sizes 512, 256. The output matrix is initialized as an identity matrix. All layers, except the last one, include ReLU and batch normalization.

class STN3d(nn.module):
    def __init__(self):
        super(STN3d, self).__init__()
        self.conv1 = torch.nn.Conv1d(3, 64, 1)
        self.conv2 = torch.nn.Conv1d(64,128,1)
        self.conv3 = torch.nn.Conv1d(128,1024,1)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 9)
        self.relu = nn.ReLU()

        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(256)

    def forward(self, x):
        batchsize = x.size()[0]
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 1024)

        x = x = F.relu(self.bn4(self.fc1(x)))
        x = x = F.relu(self.bn5(self.fc2(x)))
        x = self.fc3(x)

        iden = Variable(torch.from_numpy(np.array([1,0,0,0,1,0,0,0,1]).astype(np.float32))).view(1,9).repeat(batchsize, 1)
        if x.is_cuda:
            iden = iden.cuda()
        x = x + iden
        x = x.view(-1, 3, 3)
        return x

(2) Feature transform

The second transformation network has the same architecture as the first one except that the output is a 64 × 64 matrix. The matrix is also initialized as an identity.

class STNkd(nn.Module):
    def __init__(self, k=64):
        super(STNkd, self).__init__()
        self.conv1 = torch.nn.Conv1d(k, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 1024, 1)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, k*k)
        self.relu = nn.ReLU()

        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.bn4 = nn.BatchNorm1d(512)
        self.bn5 = nn.BatchNorm1d(256)

        self.k = k

    def forward(self, x):
        batchsize = x.size()[0]
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = torch.max(x, 2, keepdim=True)[0]
        x = x.view(-1, 1024)

        x = F.relu(self.bn4(self.fc1(x)))
        x = F.relu(self.bn5(self.fc2(x)))
        x = self.fc3(x)

        iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1,self.k*self.k).repeat(batchsize,1)
        if x.is_cuda:
            iden = iden.cuda()
        x = x + iden
        x = x.view(-1, self.k, self.k)
        return x

2. Network

(1) Shared network

因为网络既用于分类,也用于分割,因此到了global feature 后,有不同的head。
在这里插入图片描述

注意 这里是没有后面的MLP进行分类

class PointNetfeat(nn.module):
    def __init__(self, global_feat = True, feature_transform = False):
        super(PointNetfeat, self).__init__()
        self.stn = STN3d()
        self.conv1 = torch.nn.Conv1d(3, 64, 1)
        self.conv2 = torch.nn.Conv1d(64, 128, 1)
        self.conv3 = torch.nn.Conv1d(128, 1024, 1)
        self.bn1 = nn.BatchNorm1d(64)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(1024)
        self.global_feat = global_feat
        self.feature_transform = feature_transform

        if self.feature_transform:
            self.fstn = STNkd(k=64)
        
    def forward(self, x):
        n_pts = x.size()[2]
        trans = self.stn(x)  # input transform
        x = x.transpose(2, 1)
        x = torch.bmm(x, trans)
        x = x.transpose(2, 1)
        x = F.relu(self.bn1(self.conv1(x)))

        if self.feature_transform: # feature transform
            trans_feat = self.fstn(x)
            x = x.transpose(2,1)
            x = torch.bmm(x, trans_feat)
            x = x.transpose(2,1)
        else:
            trans_feat = None

        pointfeat = x
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.bn3(self.conv3(x))
        x = torch.max(x, 2, keepdim=True)[0] # maxpooling function
        x = x.view(-1, 1024)
        if self.global_feat:         # if classification only
            return x, trans, trans_feat
        else:                         # else segmentation
            x = x.view(-1, 1024, 1).repeat(1, 1, n_pts)
            return torch.cat([x, pointfeat], 1), trans, trans_feat

(2) Segmentation network

分割网络从global feature 后与前面层数据拼接,经过MLP后,输出每个点的类别分数。
在这里插入图片描述

class PointNetDenseCls(nn.Module):
    def __init__(self, k = 2, feature_transform=False):
        super(PointNetDenseCls, self).__init__()
        self.k = k
        self.feature_transform=feature_transform
        self.feat = PointNetfeat(global_feat=False, feature_transform=feature_transform) # segmentation -> global_feat = False
        self.conv1 = torch.nn.Conv1d(1088, 512, 1)
        self.conv2 = torch.nn.Conv1d(512, 256, 1)
        self.conv3 = torch.nn.Conv1d(256, 128, 1)
        self.conv4 = torch.nn.Conv1d(128, self.k, 1)
        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)
        self.bn3 = nn.BatchNorm1d(128)

    def forward(self, x):
        batchsize = x.size()[0]
        n_pts = x.size()[2]
        x, trans, trans_feat = self.feat(x)
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.relu(self.bn3(self.conv3(x)))
        x = self.conv4(x)
        x = x.transpose(2,1).contiguous()
        x = F.log_softmax(x.view(-1,self.k), dim=-1)
        x = x.view(batchsize, n_pts, self.k)
        return x, trans, trans_feat

(3) Classification network

分类网络是从global feature 后,经过了MLP输出类别的分数。
在这里插入图片描述

class PointNetCls(nn.Module):
    def __init__(self, k=2, feature_transform=False):
        super(PointNetCls, self).__init__()
        self.feature_transform = feature_transform
        self.feat = PointNetfeat(global_feat=True, feature_transform=feature_transform)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, k)
        self.dropout = nn.Dropout(p=0.3)
        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)
        self.relu = nn.ReLU()

    def forward(self, x):
        x, trans, trans_feat = self.feat(x)
        x = F.relu(self.bn1(self.fc1(x)))
        x = F.relu(self.bn2(self.dropout(self.fc2(x))))
        x = self.fc3(x)
        return F.log_softmax(x, dim=1), trans, trans_feat

3. Loss function

如果使用了feature transform网络,需要多加一个 regularization loss。因为论文中提到:
transformation matrix in the feature space has much higher dimension than the spatial transform matrix, which greatly increase the difficulty of optimization。
L r e g = ∣ ∣ I − A A T ∣ ∣ F 2 , (2) L_{reg} = ||I-AA^T||^2_F, \tag{2} Lreg=IAATF2,(2)
其中,A 是由一个小网络预测的特征对齐矩阵。通过加入正则化项,优化变得更加稳定,模型取得了更好的性能。

A regularization loss (with weight 0.001) is added to the softmax classification loss to make the matrix close to orthogonal。
先看一下regularization loss的代码,可以看到它的输入是feature transform network预测的变换矩阵,乘以自身矩阵后,与单位矩阵相减并进行归一化。最后取平均值。

def feature_transform_regularizer(trans):
    d = trans.size()[1]
    batchsize = trans.size()[0]
    I = torch.eye(d)[None, :, :]
    if trans.is_cuda:
        I = I.cuda()
    loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2,1)) - I, dim=(1,2)))
    return loss

因此在训练的时候,使用以下代码计算整体的loss。

loss = F.nll_loss(pred, target)
    if opt.feature_transform:
        loss += feature_transform_regularizer(trans_feat) * 0.001

值得注意的是,代码中使用的是F.nll_loss, 也就是negative log likelihood loss。但是且在输出pred之前,已经有了F.log_softmax操作,因此log+sorfmax + NLLLoss结果是CrossEntropyLoss。

Reference

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Python 代码笔记是对 Python 程序代码解释和说明。它可以帮助你理解代码的工作原理,并在以后更好地维护和编写代码。常用的代码笔记格式有注释、文档字符串等。示例代码: ```python # 计算平方 def square(x): """ 返回x的平方 """ return x*x print(square(4)) ``` 在上面的代码中,`# 计算平方`是注释,`"""返回x的平方"""`是文档字符串。 ### 回答2: Python代码笔记是程序员在学习和实践Python编程语言时记录的一种文档。它包括通过编写实际的Python代码示例来记录各种语法、函数、模块、库和算法的用法和应用。 Python代码笔记通常用于记录和整理编程语言的基本知识,并用代码示例来演示这些知识的具体使用。因为Python语言本身较为简洁易读,因此在代码笔记中使用Python语言编写示例代码非常方便。 通过编写Python代码笔记,程序员可以更好地理解和掌握Python编程语言的特性和用法。而且代码笔记还可以作为程序员的参考资料,帮助他们在遇到问题时快速找到解决方案并进行复用。 除了记录基本知识之外,Python代码笔记还可以用于记录程序员在实际项目中遇到的问题和解决方案。通过记录这些问题和解决方案,程序员可以在未来的项目中预防和避免相同的问题,并且能够提高自己的编程技巧和经验。 总之,Python代码笔记是程序员学习和实践Python编程语言时记录的一种文档。它可以帮助程序员整理知识、提高编程技巧,并成为他们解决问题和提高效率的有力工具。 ### 回答3: Python代码笔记是程序员在学习和使用Python语言时记录的一种方式。它可以包括以下内容: 首先,Python代码笔记通常会记录Python代码的基本语法和用法。这些笔记会列举Python的关键字、变量类型、运算符、控制流语句等基本知识点,以便在需要的时候进行快速查阅和复习。 其次,Python代码笔记还会记录一些常用的Python库和模块的使用方法。Python具有丰富的第三方库和模块,如numpy、pandas、matplotlib等,这些库在数据处理、科学计算、绘图等领域都有广泛的应用。通过记录库和模块的使用方法,可以帮助程序员实现特定的功能或解决具体的问题。 此外,Python代码笔记还会记录一些常见的编程技巧和经验。比如如何提高代码的效率、如何优化算法、如何进行调试等等。这些技巧和经验是程序员在实际开发中积累的宝贵资料,可以帮助他们更好地解决问题和提高工作效率。 最后,Python代码笔记还可以记录一些项目示例和实践经验。当程序员在开发具体的项目时,他们会遇到各种问题和挑战,记录下来的项目示例和实践经验可以为他们以后的开发工作提供参考和借鉴。这些实践经验可以包括项目的架构设计、数据库操作、接口调用等方面的知识。 综上所述,Python代码笔记是程序员学习和使用Python语言的重要辅助工具,它通过记录基本语法、常用库和模块的使用、编程技巧和经验以及项目示例和实践经验等内容,帮助程序员提高开发效率,解决问题,并不断提升自己的编程能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值