【论文笔记】An explainable stacked ensemble of deep learning models

文章介绍了一种基于深度学习的堆叠集成框架,利用预训练的CNN模型提取特征并结合元学习器进行黑色素瘤分类。实验结果显示,该模型在准确性、灵敏度和AUC上优于单一模型,提供了模型的可解释性。
摘要由CSDN通过智能技术生成

论文:An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection

参考:An explainable stacked ensemble of deep learning models for improved melanoma skin cancer detection

一、摘要

提出了一种基于可解释的深度学习堆叠集成框架,用于提高早期黑色素瘤皮肤癌检测的准确性。该框架利用多个CNN子模型进行特征提取,然后将这些预测结果输入到元学习器中,以获得最终的黑色素瘤图像分类。实验结果表明,该堆叠集成模型具有较高的准确性、敏感性和AUC值,可以有效地检测黑色素瘤皮肤癌。

黑色素瘤良恶性病变示例

二、工作流程

工作流程

预处理后的数据先使用在ImageNet数据集上预训练的CNN网络提取深度学习特征,然后将预测结果放入元学习器中进行最终的分类。

数据集和预处理

数据集:ISIC,数据集分别包含 1497张恶性和 1800 张良性的图像。

预处理:发现收集的皮肤病变图像存在噪声和伪影。因此,应用了一些标准的预处理任务,例如调整大小、归一化、噪声去除和对比度增强。所有图像都重新缩放为 224 × 224 的统一尺寸,并进行归一化以更改[0, 1] 中像素强度值的范围。

使用高斯模糊技术来减少噪声,通过将图像与高斯滤波器进行卷积来完成,高斯滤波器充当低通滤波器,从图像中去除高频成分。高斯滤波器在一维和二维空间中基于高斯函数工作,如下所示:

然后使用对比度限制自适应直方图均衡(CLAHE)通过拉伸像素分布来提高图像对比度。

提出的堆叠集成(stacking)模型
模型架构

使用EfficientNetB0、DenseNet121、Xception三种不同的fine-tuned的预训练的CNN模型进行预测,将预测结果在0维堆叠在一起输出到元学习器进行分类。最后,通过生成热图可视化来识别最能指示黑色素瘤类型的皮肤病变图像区域,从而提供模型的可解释性。

三、实验结果 

如表所示,我们展示了从所有 CNN 模型和所提出的堆叠集成模型获得的性能结果。值得注意的是,集成模型在性能指标上始终表现出比其他集成模型更好的结果,包括准确性(95.76%)、灵敏度(96.67%)、F1分数(96.13%)和AUC(95.7%)验证集。它明显证明了集成网络在黑色素瘤图像分类方面相对于其他 CNN 方法的优势。敏感性结果表明,集成模型可以从所有具有任何黑色素瘤症状的病例中正确分类黑色素瘤痣,准确率为 96.67%。

使用性能最佳的 Xception 子模型对恶性和良性黑色素瘤图像样本进行 SHAP 分析,并进行真实预测

四、结论 

本文介绍了一种可解释的基于 CNN 的深度学习堆叠集成框架,该框架使用迁移学习概念进行黑色素瘤皮肤癌检测。目前的研究旨在通过开发一个集成网络来实现这一点,该网络将多个 CNN 子模型的预测结果组合起来并馈送到元学习器以最终预测恶性黑色素瘤。该模型在公共黑色素瘤图像数据集上进行训练,使用了三个具有fine-tuned权重的 CNN 子模型,称为 DenseNet121、EfficientNetB0 和 Xception。性能最好的堆叠集成模型在对具有高度敏感性和特异性的黑色素瘤图像进行分类时,准确率 (95,76%) 和 AUC (0.978) 很高。实验结果表明,模型通过有效识别各种良性和恶性黑色素瘤标志显示出理想的可解释性属性。未来,我们还计划通过最先进的分割网络使用分割后的黑色素瘤图像来获得更好的预测结果。

  • 29
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值