一、电商搜索的演进之路
电商搜索技术经历了多个阶段的发展,不断演进以满足用户日益增长的需求和提升购物体验。
在早期的文本检索阶段,主要基于基础文本检索技术和以规则统计为主的人货匹配。这个阶段的搜索较为简单,通过对商品标题和描述等文本信息进行检索,以满足用户的基本搜索需求。然而,这种方式存在一定的局限性,难以准确理解用户的复杂意图。
随着技术的发展,进入了机器学习阶段。以统计 NLP 技术为核心,实现了用户意图理解和商品理解。利用机器学习模型对 UCTR 和 UCVR 进行建模提升转化,并引入 LTR 等排序模型提升相关性。同时,通过用户搜索行为反馈数据来优化效果,使得搜索结果更加符合用户的期望。
接着是深度学习阶段。核心是 DNN 技术驱动,包括基于深度模型的意图理解和商品理解显著提升了需求分发的准确性。在商品搜索上引入了 ANN 语义向量召回、多模态召回和 DNN 匹配技术。交互上除了文本交互还支持以 DNN 技术为核心的语音和图像商品搜索交互,排序上支持个性化搜索,可以实现千人千面的商品展示。
如今,正处于大模型阶段。首先是交互的改变,从单向的需求引导到双向的对话式自然语言交互。基于大模型的用户理解和商品理解有效解决了长尾泛化问题,在召回和相关性上大模型也正在重构整个技术架构,包括极具有颠覆潜力的大模型生成式检索技术的探索和应用。例如,京东在电商领域主要在用户交互、意图理解和商品理解、商品召回和相关性以及文案创意生成等方向应用大模型。像京言 AI 助手利用大模型的对话能力进行对话式交互导购,提升用户需求识别的准确性以及商品信息的精准建模,还利用大模型生成图文并茂的营销文案和评论总结等。
二、大模型在电商领域的应用方向
(一)用户交互与导购
大模型在用户交互与导购方面展现出强大的能力。以京言 AI 助手为例,它利用大模型的对话能力,为用户提供了更加自然、流畅的交互体验。通过与用户的对话,能够快速准确地识别用户需求,为用户提供个性化的商品推荐和购物建议。例如,当用户询问“我想买一件适合夏天穿的连衣裙”时,京言 AI 助手可以根据用户的需求,推荐适合的款式、颜色和品牌,并提供相关的商品链接和购买建议。这种对话式交互导购方式,不仅提高了用户的购物效率,还提升了用户的购物体验。
(二)意图与商品理解
在意图与商品理解方面,大模型的超强理解能力发挥了重要作用。大模型可以通过对用户行为、搜索历史、购买记录等数据的分析,深入理解用户的购物意图和需求。同时,大模型还可以对商品的标题、描述、图片等信息进行精准建模,提高商品信息的准确性和完整性。例如,当用户搜索“运动鞋”时,大模型可以根据用户的搜索历史和购买记录,判断用户的喜好和需求,为用户推荐适合的运动鞋品牌和款式。同时,大模型还可以对商品的图片进行分析,提取出商品的颜色、款式、材质等特征,为用户提供更加准确的商品信息。
(三)商品召回与相关性
大模型在商品召回与相关性方面也有着显著的优势。通过大模型做商品增强召回,可以提高商品的召回率和准确性。大模型可以对用户的需求和商品的特征进行深入分析,找到与用户需求最相关的商品。同时,大模型还可以对商品的相关性进行评估,为用户提供更加准确的商品推荐。例如,当用户搜索“手机”时,大模型可以根据用户的需求和商品的特征,召回与用户需求最相关的手机品牌和型号,并对商品的相关性进行评估,为用户提供更加准确的商品推荐。
(四)文案创意生成
在文案创意生成方面,大模型可以为电商平台提供图文并茂的营销文案和评论总结。大模型可以根据商品的特点和用户的需求,生成吸引人的营销文案和评论总结。例如,当商家推出一款新的手机时,大模型可以根据手机的特点和用户的需求,生成吸引人的营销文案,如“这款手机拥有强大的性能和出色的拍照效果,是你生活和工作的好帮手”。同时,大模型还可以对用户的评论进行总结,为商家提供有价值的反馈和建议。例如,当用户对一款手机进行评价时,大模型可以对用户的评论进行总结,提取出用户的主要观点和建议,为商家提供有价值的反馈和建议。
三、大模型应用的挑战与应对
(一)商品知识理解弱
通用大模型对商品知识的理解能力比较弱,直接应用没有明显效果优势。为了解决这一问题,需要增强持续预训练和采用 RAG(检索增强生成)技术。通过新数据和新知识的增强持续预训练,可以不断提升大模型对商品知识的理解能力。例如,电商平台可以收集更多的商品描述、用户评论等数据,将其加入到预训练数据集中,让大模型更好地学习商品的特征和用户的需求。同时,RAG 技术包括电商知识图谱 KG-RAG、商品搜索 RAG、Web 搜索 RAG 等,可以通过引入外部知识和实时信息,提高大模型对商品知识的掌握程度。据统计,通过这些技术手段,大模型在电商领域任务上的性能显著高于通用大模型。
(二)个性化理解问题
大模型在理解用户购物偏好、用户评论、商品细节上存在个性化效果挑战。为了优化个性化效果,可以采用多种方法。一方面,利用用户的历史行为数据和偏好信息,对大模型进行个性化调整。例如,根据用户的购买历史和浏览记录,为用户提供更加符合其兴趣的商品推荐。另一方面,结合深度学习中的注意力机制等技术,让大模型更加关注与用户个性化需求相关的信息。据研究表明,通过这些方法可以有效提高大模型在个性化理解方面的性能。
(三)时效性问题
大模型本身数据更新很慢,知识陈旧,而新商品、促销、价格等时效性更新超高频。为了解决时效性问题,可以采用实时数据更新技术。例如,利用流式数据处理技术,实时获取新商品信息、促销活动和价格变化等数据,并将其及时更新到大模型中。同时,可以采用增量学习的方法,让大模型能够快速适应新的数据变化,保持对电商市场的实时感知。有数据显示,通过实时数据更新技术,大模型可以在一定程度上提高对时效性信息的处理能力。
(四)成本与速度问题
大模型训练和推理成本很大,大规模使用会面临 ROI 低的问题,在线推理速度也很难满足系统实时性要求。为了降低成本和提高速度,可以采用模型压缩和优化技术。例如,通过剪枝、量化等方法减小模型的大小和计算量,提高模型的推理速度。同时,可以采用分布式训练和推理技术,利用多台服务器并行计算,提高训练和推理效率。据实际应用案例,这些技术可以在一定程度上降低大模型的成本和提高速度,满足电商系统的实时性要求。
(五)安全问题
大模型存在敏感数据泄露风险,以及生成内容的安全合规等问题。为了加强安全合规管理,可以采取多种措施。一方面,加强数据加密和访问控制,确保敏感数据的安全。例如,采用先进的加密算法对用户数据进行加密存储,限制对敏感数据的访问权限。另一方面,建立严格的内容审核机制,对大模型生成的内容进行安全合规审查。例如,利用自然语言处理技术对生成的营销文案、评论总结等内容进行审核,确保其符合法律法规和道德规范。据行业报告显示,通过这些措施可以有效降低大模型的安全风险,保障电商平台的安全运营。
四、电商巨头的大模型布局
(一)淘宝:填补内容生态
淘宝自研的“星辰”大模型官网已经上线,该大模型基于 Transformer 架构,采用半自研的 Megatron-ama 框架进行训练。星辰大模型以电商和生活服务为主要适用场景,拥有生成创作、知识问答、决策规划和代码能力四大能力。通过生成创作营销文案、提供购物经验和生活常识问答、为消费者提供旅行规划等智能服务,帮助商家降本增效,为平台消费者提供全新的消费体验。
随着互联网流量红利消退,淘宝希望借助星辰大模型突破内容壁垒,提升用户在 App 内的停留时间。无论是淘宝逛逛还是淘宝问问,都承载着淘宝对平台内部内容化发展的想象。淘天集团具备最广泛的用户画像,丰富的移动生态为星辰大模型精准聚焦场景、实现深度定制提供了助力。
(二)百度:离“钱”更近
百度升级了导购助手和数字人,有效提升了用户的购物体验,实现了商家的销量增长。作为“业界首个 AI 全栈式数字人直播解决方案”的慧播星在形象生成、语音生成、互动问答等五大能力上进行了升级;智能导购助手也在进行了改进后通过三步即可有效激发用户购物兴趣,挖掘用户潜在需求。
百度以“对话式 AI 导购”重启新电商业务,为了跑通以大模型为核心的智能云发展路径,以提升收入和利润空间。2023Q2 百度 App MAU 达到 6.77 亿,过去一年,百度 App 视频用户数增长了 38%,直播用户的增幅更是超过 2 倍,但充沛的流量并没有电商变现来形成闭环。百度希望通过大模型实现降本增效,提升电商业务的收入和利润。
(三)京东:围绕产业
京东推出言犀大模型,打出了“融合 70%通用数据与 30%数智供应链原生数据”的旗号,为京东零售、京东物流等京东自家业务的应用做铺垫。在智能客服和营销场景下,或是在直播数字人领域,京东都在尽可能地把大模型与实体产业的碎片化以及场景化需求相结合,以期望解决电商运营的痛点问题。
京东更关注产业大模型的价值,面向产业是京东大模型区别于市面绝大多数竞品的特色选项。京东认为“单兵作战”并不能给企业带来降本增效,而从需求侧到供给侧的供应链全链路数智化,才有望实现企业效益最大化。推出源于产业需求的言犀大模型,并且在消费导购、商家经营、客服售后、医疗问诊等多个供应链场景中试点接入,为企业和行业创造出了更大的价值和意义。
五、大模型在电商搜索中的创新应用
(一)智能搜索 API
淘宝/天猫关键字搜索 API 接口为用户提供了快速找到目标商品的便捷途径。用户只需输入商品相关的关键字,API 接口就能返回与之匹配的商品列表。这一功能极大地提高了搜索效率,缩短了用户寻找商品的时间。
拍立淘 API 接口则基于图像识别技术,为商家和开发者提供了一种全新的商品搜索方式。通过上传商品图片,API 接口能够快速识别图片中的商品,并返回相关的搜索结果。例如,当用户看到一款心仪的商品,但不知道其具体名称时,可以通过拍立淘 API 接口上传商品图片,快速找到同款或相似商品。
这些智能搜索 API 接口的应用场景广泛。对于商家来说,可以利用关键字搜索 API 接口进行商品信息的快速搜索和比对,提高运营效率。同时,拍立淘 API 接口可以帮助商家将自家商品与热门商品进行关联,提高商品的曝光度和销售量。对于消费者来说,智能搜索 API 接口可以让他们更加方便地找到自己想要的商品,进行比价购物,节省成本。
(二)图像识别技术
以 1688 拍立淘接口为例,其图像识别技术在电商搜索中发挥着重要作用。
首先,1688 拍立淘 API 接口的技术实现主要依赖于图像识别算法和深度学习技术。其关键步骤包括图像上传与预处理、特征提取、相似度匹配和返回搜索结果。商家或开发者将待搜索的商品图片上传至 API 接口后,接口会对图片进行预处理,包括尺寸调整、格式转换等,以适应后续的图像识别算法。接着,经过预处理后的图片会进入特征提取阶段,利用深度学习模型对图片进行特征提取,将图片中的商品转化为计算机可理解的数值向量。然后,提取到的特征向量会与 1688 平台上的商品库进行相似度匹配,通过计算特征向量之间的距离或相似度得分,找到与上传图片最相似的商品。最后,API 接口会将匹配到的商品列表返回给商家或开发者,这些商品通常按照相似度得分进行排序,方便用户快速找到目标商品。
其次,图像识别技术在电商搜索中的应用具有多方面的价值。一方面,提高了搜索效率。用户可以通过上传图片来搜索商品,大大提高了搜索的效率和准确性。与传统的文本搜索相比,图像搜索无需用户进行繁琐的文字输入,直接通过图片即可获取满足其需求的商品信息,大大提升了用户体验。另一方面,实现了个性化推荐。基于用户的历史搜索记录和购买行为,结合图像识别技术,可以实现更加精准的个性化推荐服务。通过分析用户上传的图片和搜索记录,电商平台可以推荐与用户兴趣相符的商品,提高电商网站的转化率和销售额。此外,图像识别技术还可以拓展应用场景,不仅可以用于电商领域的商品搜索和推荐,还可以应用于医疗、金融、安全监控等多个领域。
六、大模型在推荐系统中的应用
(一)个性化推荐
AI 大模型在电商推荐系统中的个性化推荐方面具有显著优势。通过分析用户历史行为和语义信息,构建用户画像,实现精准的商品推荐。例如,利用基于 Transformer 架构的预训练模型,可以从海量的用户数据中学习到复杂的模式和规律,从而更好地理解用户的兴趣偏好。据统计,采用大模型进行个性化推荐的电商平台,用户点击率平均提高了 25%,转化率提高了 20%。
大模型能够实时更新用户画像,适应用户兴趣的动态变化。当用户的兴趣发生改变时,大模型可以快速捕捉到这些变化,并调整推荐策略。例如,如果用户最近开始关注运动健身,大模型可以及时推荐相关的运动装备和健身器材。
(二)智能问答
智能问答是大模型在电商推荐系统中的另一个重要应用。在用户输入查询时,大模型能够实时生成答案,提供即时帮助。例如,当用户询问“这款手机的续航能力怎么样?”时,大模型可以快速分析商品描述和用户评论,提取出相关信息,给出准确的回答。
大模型还可以实现智能客服功能,解答用户疑问,提高交互效率。据研究表明,采用大模型作为智能客服的电商平台,用户问题的平均响应时间缩短了 70%,用户满意度提高了 15%。
(三)评论分析
利用大模型对用户评论进行情感分析,提取产品反馈。通过分析用户评论中的情感倾向,电商平台可以了解用户对商品的满意度,从而优化产品设计和服务质量。例如,如果大量用户在评论中提到某款商品的包装容易损坏,平台可以提醒商家改进包装。
大模型还可以对用户评论进行主题提取和观点挖掘,为商家提供有价值的市场洞察。例如,通过分析用户对不同品牌手机的评论,商家可以了解用户对各个品牌的优势和不足的看法,从而调整自己的产品策略。
(四)智能广告
通过理解用户兴趣,生成个性化广告,提高转化率。大模型可以根据用户的搜索历史、购买记录和浏览行为等信息,为用户生成个性化的广告推荐。例如,如果用户最近浏览了很多旅游相关的商品,大模型可以为用户推荐旅游保险、旅行用品等相关广告。
智能广告还可以提高广告的精准度和针对性,减少对用户的干扰。据数据显示,采用大模型生成个性化广告的电商平台,广告点击率提高了 30%,用户对广告的反感度降低了 20%。
七、大模型重塑购物体验的未来展望
大模型虽面临挑战,但商业潜力巨大,将持续引领电商购物新体验。
尽管大模型在电商领域的应用仍面临诸多挑战,如商品知识理解弱、个性化理解问题、时效性问题、成本与速度问题以及安全问题等,但大模型所展现出的商业潜力不可忽视。
从技术发展趋势来看,随着数据量的不断增加和算法的持续优化,大模型对商品知识的理解能力将逐步提升。通过不断的增强持续预训练和采用检索增强生成技术,大模型能够更好地掌握各类商品的特点和用户需求,为用户提供更加精准的商品推荐和购物建议。
在个性化理解方面,结合深度学习中的先进技术和用户行为数据的不断积累,大模型将能够更加准确地理解用户的购物偏好、用户评论和商品细节,实现真正的个性化服务。例如,根据用户的历史搜索记录和购买行为,为用户定制专属的购物页面和推荐列表,提高用户的购物满意度和忠诚度。
对于时效性问题,随着实时数据更新技术的不断进步,大模型将能够更快地适应新商品、促销活动和价格变化等时效性信息。利用流式数据处理技术和增量学习方法,大模型可以实时感知电商市场的变化,为用户提供最新的商品信息和优惠活动。
在成本与速度方面,模型压缩和优化技术以及分布式训练和推理技术的不断发展,将降低大模型的训练和推理成本,提高在线推理速度。这将使得大模型在电商领域的大规模应用成为可能,为电商企业带来更高的效益和竞争力。
安全问题一直是大模型应用的重要关注点。随着安全技术的不断提升,加强数据加密和访问控制,建立严格的内容审核机制,将有效降低大模型的安全风险,保障电商平台的安全运营。
未来,大模型将持续引领电商购物新体验。在交互方面,更加自然、流畅的对话式交互将成为主流,用户可以通过与大模型的智能助手进行对话,轻松完成购物决策。在商品推荐方面,基于大模型的个性化推荐将更加精准,满足用户的多样化需求。在营销文案和评论总结方面,大模型将生成更加吸引人的内容,提高商品的曝光度和销售量。
同时,大模型还将与其他新兴技术相结合,如虚拟现实、增强现实等,为用户带来更加沉浸式的购物体验。用户可以通过虚拟现实技术试穿服装、试用家居产品等,提高购物的趣味性和决策的准确性。
总之,大模型虽然面临着挑战,但商业潜力巨大。随着技术的不断进步和应用的不断拓展,大模型将持续重塑购物体验,为电商行业带来新的发展机遇。