LeGO-LOAM中的数学公式推导

本文深入探讨LeGO-LOAM算法中的数学公式,涉及特征关联、地图优化、坐标变换等方面。重点讨论了协方差矩阵计算,包括随机变量的协方差定义、协方差矩阵的构建及其在点到直线、平面距离计算中的应用。同时,介绍了坐标变换的过程,包括旋转矩阵的计算和坐标系旋转的原理。
摘要由CSDN通过智能技术生成

LeGO-LOAM是一种在LOAM之上进行改进的激光雷达建图方法,建图效果比LOAM要好,但是建图较为稀疏,计算量也更小了。

本文原地址:wykxwyc的博客

github注释后LeGO-LOAM源码:LeGO-LOAM_NOTED
关于代码的详细理解,建议阅读:

1.地图优化代码理解

2.图像重投影代码理解

3.特征关联代码理解

4.LeGO-LOAM中的数学公式推导

以上博客会随时更新,如果对你有帮助,请点击注释代码的github仓库右上角star按钮,你的鼓励将给我更多动力。

本文 记录重新读LeGO-LOAM的代码时看到的数学运算,记录这些数学运算背后的原理,会随时更新。

featureAssociation中的数学公式

To be continued.

mapOptmization中的数学公式

cornerOptimization中的协方差矩阵计算

随机变量的协方差是什么?
1.在概率论和统计中,协方差是对两个随机变量联合分布线性相关程度的一种度量。两个随机变量越线性相关,协方差越大,完全线性无关,协方差为零。(线性无关并不代表完全无关,更不代表相互独立。)

2.两个随机变量 X X X Y Y Y协方差的定义如下:
(CO-1) cov ⁡ ( X , Y ) = E [ ( X − E [ X ] ) ( Y − E [ Y ] ) ] \operatorname{cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])] \tag{CO-1} cov(X,Y)=E[(XE[X])(YE[Y])](CO-1)

如何判断两个随机变量的相关程度?
1.通过定义这两个变量之间的相关系数 η \eta η进行判断:
(CO-2) η = cov ⁡ ( X , Y ) var ⁡ ( X ) ⋅ var ⁡ ( Y ) \eta=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \cdot \operatorname{var}(Y)}} \tag{CO-2} η=var(X)var(Y) cov(X,Y)(CO-2)

1表示完全线性相关,−1表示完全线性负相关,0表示线性无关。线性无关并不代表完全无关,更不代表相互独立。

样本的协方差矩阵
1.设多维随机变量 X = [ X 1 , X 2 , X 3 , … , X n ] T \mathbf{X}=\left[X_{1}, X_{2}, X_{3}, \dots, X_{n}\right]^{T} X=[X1,X2,X3,,Xn]T的协方差矩阵为 Σ \Sigma Σ,则协方差矩阵中的每个元素为:
(CO-3) Σ i j = cov ⁡ ( X i , X j ) = E [ ( X i − E [ X i ] ) ( X j − E [ X j ] ) ] \Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left[\left(X_{i}-\mathrm{E}\left[X_{i}\right]\right)\left(X_{j}-\mathrm{E}\left[X_{j}\right]\right)\right] \tag{CO-3} Σij=cov(Xi,Xj)=E[(XiE[Xi])(XjE[Xj])](CO-3)
上式表示的是 X i X_{i} Xi X j X_{j} Xj之间的协方差。

公式CO-3也揭示了协方差矩阵中每个元素的计算过程,整个矩阵为:
Σ = E [ ( X − E [ X ] ) ( X − E [ X ] ) T ] = [ cov ⁡ ( X 1 , X 1 ) cov ⁡ ( X 1 , X 2 ) … cov ⁡ ( X 1 , X n ) cov ⁡ ( X 2 , X 1 ) cov ⁡ ( X 2 , X 2 ) … cov ⁡ ( X 2 , X n ) ⋮ ⋮ ⋱ ⋮ cov ⁡ ( X n , X 1 ) cov ⁡ ( X n , X 2 ) ⋯ cov ⁡ ( X n , X n ) ] = [ E [ ( X 1 − E [ X 1 ] ) ( X 1 − E [ X 1 ] ) ] E [ ( X 1 − E [ X 1 ] ) ( X 2 − E [ X 2 ] ) ] ⋯ E [ ( X 1 − E [ X 1 ] ) ( X n − E [ X n ] ) ] E [ ( X 2 − E [ X 2 ] ) ( X 1 − E [ X 1 ] ) ] E [ ( X 2 − E [ X 2 ] ) ( X 2 − E [ X 2 ] ) ] ⋯ E [ ( X 2 − E [ X 2 ] ) ( X n − E [ X n ] ) ] ⋮ ⋮ ⋱ ⋮ E [ ( X n − E [ X n ] ) ( X 1 − E [ X 1 ] ) ] E [ ( X n − E [ X n ] ) ( X 2 − E [ X 2 ] ) ] ⋯ E [ ( X n − E [ X n ] ) ( X n − E [ X n ] ) ] ] \begin{aligned} &\Sigma =\mathrm{E}\left[(\mathbf{X}-\mathrm{E}[\mathbf{X}])(\mathbf{X}-\mathrm{E}[\mathbf{X}])^{T}\right] \\ &=\left[\begin{array}{cccc}{\operatorname{cov}\left(X_{1}, X_{1}\right)} & {\operatorname{cov}\left(X_{1}, X_{2}\right)} & {\dots} & {\operatorname{cov}\left(X_{1}, X_{n}\right)} \\ {\operatorname{cov}\left(X_{2}, X_{1}\right)} & {\operatorname{cov}\left(X_{2}, X_{2}\right)} & {\dots} & {\operatorname{cov}\left(X_{2}, X_{n}\right)} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {\operatorname{cov}\left(X_{n}, X_{1}\right)} & {\operatorname{cov}\left(X_{n}, X_{2}\right)} & {\cdots} & {\operatorname{cov}\left(X_{n}, X_{n}\right)}\end{array}\right] \\ &=\left[\begin{array}{cccc}{\mathrm{E}\left[\left(X_{1}-\mathrm{E}\left[X_{1}\right]\right)\left(X_{1}-\mathrm{E}\left[X_{1}\right]\right)\right]} & {\mathrm{E}\left[\left(X_{1}-\mathrm{E}\left[X_{1}\right]\right)\left(X_{2}-\mathrm{E}\left[X_{2}\right]\right)\right]} & {\cdots} & {\mathrm{E}\left[\left(X_{1}-\mathrm{E}\left[X_{1}\right]\right)\left(X_{n}-\mathrm{E}\left[X_{n}\right]\right)\right]} \\ {\mathrm{E}\left[\left(X_{2}-\mathrm{E}\left[X_{2}\right]\right)\left(X_{1}-\mathrm{E}\left[X_{1}\right]\right)\right]} & {\mathrm{E}\left[\left(X_{2}-\mathrm{E}\left[X_{2}\right]\right)\left(X_{2}-\mathrm{E}\left[X_{2}\right]\right)\right]} & {\cdots} & {\mathrm{E}\left[\left(X_{2}-\mathrm{E}\left[X_{2}\right]\right)\left(X_{n}-\mathrm{E}\left[X_{n}\right]\right)\right]} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {\mathrm{E}\left[\left(X_{n}-\mathrm{E}\left[X_{n}\right]\right)\left(X_{1}-\mathrm{E}\left[X_{1}\right]\right)\right]} & {\mathrm{E}\left[\left(X_{n}-\mathrm{E}\left[X_{n}\right]\right)\left(X_{2}-\mathrm{E}\left[X_{2}\right]\right)\right]} & {\cdots} & {\mathrm{E}\left[\left(X_{n}-\mathrm{E}\left[X_{n}\right]\right)\left(X_{n}-\mathrm{E}\left[X_{n}\right]\right)\right]}\end{array}\right] \end{aligned} Σ=E[(XE[X])(XE[X])T]=cov(X1,X1)cov(X2,X1)cov(Xn,X1)cov(X1,X2)cov(X2,X2)cov(Xn,X2)cov(X1,Xn)cov(X2,Xn)cov(Xn,Xn)=E[(X1E[X1])(X1E[X1])]E[(X2E[X2])(X1E[X1])]E[(XnE[Xn])(X1E[X1])]E[(X1E[X1])(X2E[X2])]E[(X2E[X2])(X2E[X2])]E[(XnE[Xn])(X2E[X2])]E[(X1E[X

  • 24
    点赞
  • 91
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值