一、图像分类SOTA模型(15个)
1.模型:AlexNet
论文题目:Imagenet Classification with Deep Convolution Neural Network
2.模型:VGG
论文题目:Very Deep Convolutional Networks for Large-Scale Image Recognition
3.模型:GoogleNet
论文题目:Going Deeper with Convolutions
4.模型:ResNet
论文题目:Deep Residual Learning for Image Recognition
5.模型:ResNeXt
论文题目:Aggregated Residual Transformations for Deep Neural Networks
6.模型:DenseNet
论文题目:Densely Connected Convolutional Networks
7.模型:MobileNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
8.模型:SENet
论文题目:Squeeze-and-Excitation Networks
9.模型:DPN
论文题目:Dual Path Networks
10.模型:IGC V1
论文题目:Interleaved Group Convolutions for Deep Neural Networks
11.模型:Residual Attention Network
论文题目:Residual Attention Network for Image Classification
12.模型:ShuffleNet
论文题目:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
13.模型:MnasNet
论文题目:MnasNet: Platform-Aware Neural Architecture Search for Mobile
14.模型:EfficientNet
论文题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
15.模型:NFNet
论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applic
二、图像生成SOTA模型(16个)
Progressive Growing of GANs for Improved Quality, Stability, and Variation
A Style-Based Generator Architecture for Generative Adversarial Networks
Analyzing and Improving the Image Quality of StyleGAN
Alias-Free Generative Adversarial Networks
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
A Contrastive Learning Approach for Training Variational Autoencoder Priors
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
Diffusion-GAN: Training GANs with Diffusion
Improved Training of Wasserstein GANs
Self-Attention Generative Adversarial Networks
Large Scale GAN Training for High Fidelity Natural Image Synthesis
CSGAN: Cyclic-Synthesized Generative Adversarial Networks for Image-to-Image Transformation
LOGAN: Latent Optimisation for Generative Adversarial Networks
A U-Net Based Discriminator for Generative Adversarial Networks
Instance-Conditioned GAN
Conditional GANs with Auxiliary Discriminative Classifier
三、目标检测SOTA模型(16个)
Rich feature hierarchies for accurate object detection and semantic segmentation
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Fast R-CNN
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Training Region-based Object Detectors with Online Hard Example Mining
R-FCN: Object Detection via Region-based Fully Convolutional Networks
Mask R-CNN
You Only Look Once: Unified, Real-Time Object Detection
SSD: Single Shot Multibox Detector
Feature Pyramid Networks for Object Detection
Focal Loss for Dense Object Detection
Accurate Single Stage Detector Using Recurrent Rolling Convolution
CornerNet: Detecting Objects as Paired Keypoints
M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
Fully Convolutional One-Stage Object Detection
ObjectBox: From Centers to Boxes for Anchor-Free Object Detection
本文概述了当前最先进的15个图像分类模型,如AlexNet到EfficientNet,以及16个图像生成模型如StyleGAN系列和16个目标检测模型,如R-CNN和FasterR-CNN。这些SOTA技术展示了深度学习在计算机视觉领域的显著进步。
1859

被折叠的 条评论
为什么被折叠?



