SoftMax原理介绍 及其 LabelSmooth优化

在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

 

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)

除去name参数用以指定该操作的name,与方法有关的一共两个参数

 

第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes,

第二个参数labels:实际的标签,大小同上。

 

一 、具体的执行流程大概分为两步:

第一步  先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)

softmax的公式是:

至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明。

 

第二步softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:

                    

其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss。

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

 

 

代码:

import tensorflow as tf  
  
#our NN's output  
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])  
#step1:do softmax  
y=tf.nn.softmax(logits)  
#true label  
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])  
#step2:do cross_entropy  
cross_entropy = -tf.reduce_sum(y_*tf.log(y))  
#do cross_entropy just one step  
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!!  
  
with tf.Session() as sess:  
    softmax=sess.run(y)  
    c_e = sess.run(cross_entropy)  
    c_e2 = sess.run(cross_entropy2)  
    print("step1:softmax result=")  
    print(softmax)  
    print("step2:cross_entropy result=")  
    print(c_e)  
    print("Function(softmax_cross_entropy_with_logits) result=")  
    print(c_e2)

输出结果是:

复制代码

step1:softmax result=  
[[ 0.09003057  0.24472848  0.66524094]  
 [ 0.09003057  0.24472848  0.66524094]  
 [ 0.09003057  0.24472848  0.66524094]]  
step2:cross_entropy result=  
1.22282  
Function(softmax_cross_entropy_with_logits) result=  
1.2228  

复制代码

最后大家可以试试e^1/(e^1+e^2+e^3)是不是0.09003057,发现确实一样!!这也证明了我们的输出是符合公式逻辑的。

 

二 、TensorFlow 具体有两种实现方式:


tf.nn.sparse_softmax_cross'_entropy_with_logits(logits=net, labels=y) 
tf.nn.softmax_cross_entropy_with_logits(logits=net, labels=y2)

sparse_softmax_cross_entropy_with_logits中 lables接受直接的数字标签 
如[1], [2], [3], [4] (类型只能为int32,int64) 
而softmax_cross_entropy_with_logits中 labels接受one-hot标签 
如[1,0,0,0], [0,1,0,0],[0,0,1,0], [0,0,0,1] (类型为int32, int64)

相当于sparse_softmax_cross_entropy_with_logits 对标签多做一个one-hot动作。

 

三、 LabelSmooth --  Softmarks 的优化

最终在训练网络时,最小化预测概率和标签真实概率的交叉熵,从而得到最优的预测概率分布。在此过程中,为了达到最好的拟合效果,最优的预测概率分布为:

也就是说,网络会驱使自身往正确标签和错误标签差值大的方向学习,存在一个问题,就是在训练数据不足以表征所以的样本特征的情况下,这就会导致网络过拟合。

 

label smoothing原理
label smoothing的提出就是为了解决上述问题。最早是在Inception v2中被提出,是一种正则化的策略。其通过"软化"传统的one-hot类型标签,使得在计算损失值时能够有效抑制过拟合现象。如下图所示,label smoothing相当于减少真实样本标签的类别在计算损失函数时的权重,最终起到抑制过拟合的效果。


1.label smoothing将真实概率分布作如下改变:


其实更新后的分布就相当于往真实分布中加入了噪声,为了便于计算,该噪声服从简单的均匀分布。


2.与之对应,label smoothing将交叉熵损失函数作如下改变:


3.与之对应,label smoothing将最优的预测概率分布作如下改变:


阿尔法可以是任意实数,最终通过抑制正负样本输出差值,使得网络能有更好的泛化能力。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值