论文:https://arxiv.org/pdf/1911.11929.pdf
CSPNet全称是Cross Stage Partial Network,主要从一个比较特殊的角度切入,能够在降低20%计算量的情况下保持甚至提高CNN的能力。
跨阶段局部网络(CSPNet)是 Wang 等人于 2019 年提出的新型骨干网络,主要用于增强 CNN 的学习能力。CSPNet 结构通过将浅层的特征图在通道维度一分为二,一部分经由特征提取模块(比如残差块)向后传播,另一部分则经过跨阶段层次结构直接与特征提取模块的输出进行合并,实现了更加丰富的梯度组合,并且在准确性不变或者提高的基础上可以减少了 10%~20%的网络参数量。CSPNet 结构可以轻松应用于 ResNet、ResNeXt和 DenseNet等常用 CNN模型,在同样的测试条件(分类或检测)下可以稍微提高模型的学习能力。CSPNet结构应用于 ResNe(X)t 之后的网络结构如图。
图 2.6 可以看到, 在 ResNe(X)t 结构中,输入特征图经过多个残差块层层向后传递,由于堆
【深度学习】YOLOv5 中使用的 CSPNet 是怎么回事
于 2022-03-25 15:24:56 首次发布