论文地址:https://arxiv.org/abs/1709.04875
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
文章目录
一、摘要
准时准确的交通预测对城市交通控制和引导至关重要。由于交通流的高非线性和复杂性,传统方法无法满足中长期预测任务的要求,并且通常忽视空间和时间依赖关系。本文提出了一种新颖的深度学习框架,即时空图卷积网络(STGCN),用于解决交通领域的时间序列预测问题。我们不是应用常规的卷积和循环单元,而是在图上制定问题,并利用完整的卷积结构构建模型,这使得训练速度更快,参数更少。实验证明,我们的模型STGCN通过建模多尺度交通网络有效地捕获了全面的时空相关性,并在各种真实世界的交通数据集上始终优于最先进的基线模型。
二、数据集介绍
美国洛杉矶交通数据集 METR-LA 介绍
T-GCN文章选取了该数据集2012年3月1日至3月7日期间的207个传感器及其交通速度。每5分钟汇总一次交通速度。**相似性,数据总结出一个邻接矩阵和一个特征矩阵。邻接矩阵