【深度学习】时空图卷积网络(STGCN),预测交通流量

论文地址:https://arxiv.org/abs/1709.04875

Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

一、摘要

准时准确的交通预测对城市交通控制和引导至关重要。由于交通流的高非线性和复杂性,传统方法无法满足中长期预测任务的要求,并且通常忽视空间和时间依赖关系。本文提出了一种新颖的深度学习框架,即时空图卷积网络(STGCN),用于解决交通领域的时间序列预测问题。我们不是应用常规的卷积和循环单元,而是在图上制定问题,并利用完整的卷积结构构建模型,这使得训练速度更快,参数更少。实验证明,我们的模型STGCN通过建模多尺度交通网络有效地捕获了全面的时空相关性,并在各种真实世界的交通数据集上始终优于最先进的基线模型。

二、数据集介绍

美国洛杉矶交通数据集 METR-LA 介绍

T-GCN文章选取了该数据集2012年3月1日至3月7日期间的207个传感器及其交通速度。每5分钟汇总一次交通速度。**相似性,数据总结出一个邻接矩阵和一个特征矩阵。邻接矩阵

### 时空图卷积网络 (STGCN) 在交通预测中的应用 #### 架构概述 时空图卷积网络STGCN)是一种专门设计用于处理结构化时间序列数据的深度学习框架,特别适用于交通流量预测任务。该模型通过将交通网络表示为图形来捕捉其内在的空间关系,并利用全卷积结构在时间维度上进行特征提取[^1]。 #### 关键组件解析 - **空间图卷积层**:此部分负责从交通网络中抽取节点间的关系信息。具体来说,就是把城市路网视为一张无向图,在此基础上执行图卷积操作以获取局部邻域内的交互模式。 - **门控时间卷积层**:这部分旨在解决传统RNN难以长期记忆的问题。采用因果卷积的方式构建滤波器,使得每一时刻只依赖于过去的信息;并通过引入门机制控制信息流动路径,从而更好地模拟实际场景下的动态变化过程。 - **注意力模块**:为了进一步增强模型表达能力,可以在某些版本的STGCN中加入Attention Module。这一单元接收来自各个节点的数据作为输入,经过两次线性变换加上ReLU激活之后再经Softmax归一化得出各位置的重要性程度——即所谓的“注意力建议”。最终这些权重会被用来调整原始信号强度,达到突出重要区域的效果[^4]。 #### 训练流程说明 整个训练过程中主要涉及以下几个方面的工作: - 数据预处理阶段需完成对原始观测值的清洗整理以及必要的转换工作; - 接着定义损失函数并选择合适的优化算法来进行参数更新迭代直至收敛为止; - 测试环节则要依据设定好的评价指标体系衡量不同方案之间的优劣差异。 ```python import torch from stgcn import STGCN # 假设有一个名为stgcn.py文件实现了具体的类定义 device = 'cuda' if torch.cuda.is_available() else 'cpu' model = STGCN(num_nodes=..., input_dim=..., output_dim=...).to(device) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=...) for epoch in range(epochs): model.train() optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值