完整内容请看文章最下面的推广群
先进行文章和结果的展示、再给出完整的思路
文章包含50面+ 30组图片 和替换内容
每题的模型都含有替换备选的模型!
问题1:通过时间序列或机器学习模型预测货量,并按历史分布拆分到10分钟颗粒度。
问题2:基于货量生成运输需求,用贪心算法或整数规划优化车辆调度。
问题3:调整装载量和时间参数,重新优化调度,并决策是否使用标准容器。
问题4:通过模拟偏差分析影响,提出鲁棒性改进策略。
短途运输货量预测及车辆调度问题
摘要
随着城市物流需求的持续增长,如何在多线路、多时段、多资源约束下进行高效、低成本的运输管理,成为智慧物流系统中亟需解决的重要问题。本文围绕 某大型快递公司的干支线运输调度优化展开研究,依托其提供的预测包裹数据、车辆资源和运输网络,建立从货量预测、需求生成、车辆调度到路径优化的一体化建模流程,提出了一套可行、可计算、可推广的综合调度优化方法。
针对问题一,我们首先基于历史干支线运输数据,构建了货量时间序列预 测模型。通过滑动窗口提取各线路在不同时间段的包裹变化规律,并结合节假 日效应和日周期特征,选择结合深度学习模型(LSTM)与传统时间序列模型 (Prophet)。这种结合能够充分考虑数据中的趋势性、季节性以及长期依赖关系, 从而提高预测的准确性。最终将预测结果填入结果表 1 与表 2,实现对未来全 线包裹量变化的精准刻画。
在问题二中,我们基于问题一的预测结果,建立了运输需求生成模型,并针 对不同线路与时间段的包裹量,动态确定最小运输批次。随后构建了车辆调度整数规划模型,以最小化自有车辆与外部车辆的组 合使用成本为目标,约束条件包括运输需求完整覆盖、车辆载重限制与工作时间限制,输出最优的发车计划与车辆匹配方案,结合整数规划和强化学习技术 来实现优化问题的求解。
问题二替换模型:结合 整数规划与 启发式算法来求解优化问题, 分析调度模型优化结果。
问题三在现有调度模型的基础上,引入一种新的标准容器,来提升自有车辆的利用率,并评估其对运输效率的影响。优化目标与问题2相同,即通过整数规划来最小化总成本,同时加入是否使用标准容器的决策变量,来确保在最小化运输成本的同时提升自有车辆的利用率。我们引入运输网络图模型,对运输路径与运输成本进行系统性优化。构建以节点为站点、边为路径的加权有向图,采用最短路径算法结合流量分配模型,以最小化总运输路径成本为目标,约束包括路径容量、任务需求满足和节点流量平衡。最终利用整数线性规划求解最优路径集合与每条路径的流量分配,实现多源多汇、多路径下的全局运输优化。
在问题四中,在问题三基础上进一步优化车辆调度方案, 重点考虑包裹波动带来的 调度不确定性。我们首先引入扰动误差对货量预测进行修正,并重构运输需求。 接着,我们设计了基于遗传算法的调度优化策略,利用算法训练调度代理,根据历史任务反馈动态调整车辆分配,实现对突发运输压力的快速响 应与资源的智能再分配。最后基于分析评估货量预测出现偏差时,对调度模型优化结果的影响。在问题4中,我们评估了货量预测误差对调度模型优化结果的影响。通过对货量进行不同幅度的扰动(分别增加和减少20%),进行敏感性分析,分析货量波动对总成本和车辆调度的影响。
综合上述四个问题的研究结果,本文提出了一种覆盖预测、生成、调度、路 径的多层级物流运输优化框架, 既能满足大规模运输数据下的精细化管理,又 具备较高的实时性与实用价值,能够为快递物流行业提供可靠的决策支持与智能优化解决方案。
关键词: LSTM; Prophet; 整数规划; 强化学习; 最短路径算法; 遗传算法
目录
短途运输货量预测及车辆调度问题 1
摘要 1
一、 问题重述 4
1.1 问题背景 4
1.2 要解决的问题 4
二、 问题分析 6
2.1 任务一的分析 6
2.2 任务二的分析 6
2.3 任务三的分析 6
2.4 任务四的分析 7
三、 问题假设 8
四、 模型原理 9
4.1 粒子群优化算法 9
4.2 灰狼优化算法 10
4.3 整数规划 11
4.4 XGBoost算法 13
五、 模型建立与求解 15
5.0 数据预处理与可视化 15
5.1 问题一建模与求解 24
问题一:货量预测的模型与求解 24
5.1.1 LSTM (长短时记忆网络)模型 24
5.1.2 Prophet 模型 24
5.1.3 模型建立与求解 25
5.2 问题二建模与求解 28
问题二:运输需求生成与车辆调度优化的模型构建 28
5.2.1 基于整数规划与强化学习的调度优化 29
运输需求生成 29
车辆调度优化 29
5.2.2 模型的结合 31
5.3 问题三建模与求解 35
问题三:车辆调度优化的模型构建 35
5.3.1 基于整数规划与启发式算法的调度优化 33
车辆调度优化:整数规划模型 33
5.3.2 启发式算法优化 34
5.4 问题四建模与求解 39
问题四:优化运输路径与成本模型的建立 39
5.4.1基于最短路径与流量分配的优化模型 36
运输路径优化:最短路径问题 36
流量分配模型 36
5.4.2 优化目标:最小化运输成本 37
六、 模型评价与推广 41
6.1模型的评价 41
6.1.1模型缺点 41
6.1.2模型缺点 42
6.2 模型推广 42
七、 参考文献 43
附录【自行黏贴】 44
表2 结果表1部分数据
场地3 - 站点83 - 0600 2024-12-16 00:00:00 4604.35473
场地3 - 站点83 - 1400 2024-12-16 00:00:00 911.126255
表2 结果表2部分数据
场地3 - 站点83 - 0600 2024-12-15 00:00:00 21:10:00 111.6857203
场地3 - 站点83 - 0600 2024-12-15 00:00:00 21:20:00 80.11741293
场地3 - 站点83 - 0600 2024-12-15 00:00:00 21:30:00 139.480292
场地3 - 站点83 - 0600 2024-12-15 00:00:00 21:40:00 39.52683944
场地3 - 站点83 - 0600 2024-12-15 00:00:00 21:50:00 29.50406848
场地3 - 站点83 - 0600 2024-12-15 00:00:00 22:00:00 72.84888563
场地3 - 站点83 - 0600 2024-12-15 00:00:00 22:10:00 166.1219747
场地3 - 站点83 - 0600 2024-12-15 00:00:00 22:20:00 127.367296
场地3 - 站点83 - 0600 2024-12-15 00:00:00 22:30:00 75.10632163
场地3 - 站点83 - 0600 2024-12-15 00:00:00 22:40:00 92.73864651
场地3 - 站点83 - 0600 2024-12-15 00:00:00 22:50:00 15.09804921
场地3 - 站点83 - 0600 2024-12-15 00:00:00 23:00:00 176.5187485
场地3 - 站点83 - 0600 2024-12-15 00:00:00 23:10:00 119.4761966
场地3 - 站点83 - 0600 2024-12-15 00:00:00 23:20:00 51.1683956
场地3 - 站点83 - 0600 2024-12-15 00:00:00 23:30:00 105.026098
场地3 - 站点83 - 0600 2024-12-15 00:00:00 23:40:00 19.62844135
场地3 - 站点83 - 0600 2024-12-15 00:00:00 23:50:00 173.159104
场地3 - 站点83 - 0600 2024-12-16 00:00:00 00:00:00 31.33615948
场地3 - 站点83 - 0600 2024-12-16 00:00:00 00:10:00 116.1814961
场地3 - 站点83 - 0600 2024-12-16 00:00:00 00:20:00 44.00606869
场地3 - 站点83 - 0600 2024-12-16 00:00:00 00:30:00 128.6473066
场地3 - 站点83 - 0600 2024-12-16 00:00:00 00:40:00 139.2716763
场地3 - 站点83 - 0600 2024-12-16 00:00:00 00:50:00 120.7334124
场地3 - 站点83 - 0600 2024-12-16 00:00:00 01:00:00 110.1699483
场地3 - 站点83 - 0600 2024-12-16 00:00:00 01:10:00 160.0054684
场地3 - 站点83 - 0600 2024-12-16 00:00:00 01:20:00 14.09651472
场地3 - 站点83 - 0600 2024-12-16 00:00:00 01:30:00 59.32773747
场地3 - 站点83 - 0600 2024-12-16 00:00:00 01:40:00 44.51398345
场地3 - 站点83 - 0600 2024-12-16 00:00:00 01:50:00 177.1351388
场地3 - 站点83 - 0600 2024-12-16 00:00:00 02:00:00 69.81137444
场地3 - 站点83 - 0600 2024-12-16 00:00:00 02:10:00 131.3457675
场地3 - 站点83 - 0600 2024-12-16 00:00:00 02:20:00 122.7602965
场地3 - 站点83 - 0600 2024-12-16 00:00:00 02:30:00 38.02278194
场地3 - 站点83 - 0600 2024-12-16 00:00:00 02:40:00 42.84847065
场地3 - 站点83 - 0600 2024-12-16 00:00:00 02:50:00 50.4298341
场地3 - 站点83 - 0600 2024-12-16 00:00:00 03:00:00 73.7085611
场地3 - 站点83 - 0600 2024-12-16 00:00:00 03:10:00 42.01074541
场地3 - 站点83 - 0600 2024-12-16 00:00:00 03:20:00 3.5231973
场地3 - 站点83 - 0600 2024-12-16 00:00:00 03:30:00 157.6611436
场地3 - 站点83 - 0600 2024-12-16 00:00:00 03:40:00 173.1184356
场地3 - 站点83 - 0600 2024-12-16 00:00:00 03:50:00 61.23812034
场地3 - 站点83 - 0600 2024-12-16 00:00:00 04:00:00 60.68888231
场地3 - 站点83 - 0600 2024-12-16 00:00:00 04:10:00 1.271448874
场地3 - 站点83 - 0600 2024-12-16 00:00:00 04:20:00 121.9580944
场地3 - 站点83 - 0600 2024-12-16 00:00:00 04:30:00 147.9882027
场地3 - 站点83 - 0600 2024-12-16 00:00:00 04:40:00 26.28452899
场地3 - 站点83 - 0600 2024-12-16 00:00:00 04:50:00 28.62562883
场地3 - 站点83 - 0600 2024-12-16 00:00:00 05:00:00 141.6493203
场地3 - 站点83 - 0600 2024-12-16 00:00:00 05:10:00 110.4910977
场地3 - 站点83 - 0600 2024-12-16 00:00:00 05:20:00 8.042782193
场地3 - 站点83 - 0600 2024-12-16 00:00:00 05:30:00 111.6127421
场地3 - 站点83 - 0600 2024-12-16 00:00:00 05:40:00 55.38401865
场地3 - 站点83 - 0600 2024-12-16 00:00:00 05:50:00 66.10653704
场地3 - 站点83 - 1400 2024-12-16 00:00:00 11:00:00 57.79824795
场地3 - 站点83 - 1400 2024-12-16 00:00:00 11:10:00 60.89219204
场地3 - 站点83 - 1400 2024-12-16 00:00:00 11:20:00 30.06231919
场地3 - 站点83 - 1400 2024-12-16 00:00:00 11:30:00 71.1206259
场地3 - 站点83 - 1400 2024-12-16 00:00:00 11:40:00 30.52081856
场地3 - 站点83 - 1400 2024-12-16 00:00:00 11:50:00 57.95628122
场地3 - 站点83 - 1400 2024-12-16 00:00:00 12:00:00 36.33378793
场地3 - 站点83 - 1400 2024-12-16 00:00:00 12:10:00 67.39467134
场地3 - 站点83 - 1400 2024-12-16 00:00:00 12:20:00 68.16274897
场地3 - 站点83 - 1400 2024-12-16 00:00:00 12:30:00 6.564027681
场地3 - 站点83 - 1400 2024-12-16 00:00:00 12:40:00 70.32020843
场地3 - 站点83 - 1400 2024-12-16 00:00:00 12:50:00 61.9884629
场地3 - 站点83 - 1400 2024-12-16 00:00:00 13:00:00 59.4186125
场地3 - 站点83 - 1400 2024-12-16 00:00:00 13:10:00 15.0862017
场地3 - 站点83 - 1400 2024-12-16 00:00:00 13:20:00 60.45547649
场地3 - 站点83 - 1400 2024-12-16 00:00:00 13:30:00 63.83549044
场地3 - 站点83 - 1400 2024-12-16 00:00:00 13:40:00 21.71196645
场地3 - 站点83 - 1400 2024-12-16 00:00:00 13:50:00 71.50411535
表3
线路编码 预计发运时间 发运车辆 自有车数量 外部车数量 备注 装载率%
场地3 - 站点83 - 0600 06:00:00 5 0 5 外部车 92.0870946
场地3 - 站点83 - 1400 14:00:00 1 0 1 外部车 91.1126255
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from statsmodels.tsa.arima.model import ARIMA
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# 1. 数据加载与预处理
def load_data():
# 假设数据已加载为DataFrame
df_hist = pd.read_excel('附件2.xlsx') # 历史10分钟颗粒度数据
df_known = pd.read_excel('附件3.xlsx') # 预知货量
df_routes = pd.read_excel('附件1.xlsx') # 线路信息
# 转换时间格式(修正错误的关键步骤)
if not pd.api.types.is_datetime64_any_dtype(df_hist['分钟起始']):
df_hist['分钟起始'] = pd.to_datetime(df_hist['分钟起始']).dt.time
# 合并数据
df_hist = pd.merge(df_hist, df_routes, on='线路编码', how='left')
return df_hist, df_known
# 2. 特征工程(修正版)
def create_features(df):
# 直接从time对象提取特征
df['小时'] = df['分钟起始'].apply(lambda x: x.hour)
df['分钟'] = df['分钟起始'].apply(lambda x: x.minute)
df['是否高峰时段'] = df['小时'].apply(lambda x: 1 if x in [6, 14] else 0)
# 线路特征标准化
if '在途时长' in df.columns:
df['在途时长_norm'] = (df['在途时长'] - df['在途时长'].mean()) / df['在途时长'].std()
return df
# 3. 货量预测模型
def predict_volume(df_hist, df_known):
predictions = {}
for route in df_known['线路编码'].unique():
# 获取线路数据
route_data = df_hist[df_hist['线路编码'] == route].copy()
if len(route_data) < 10: # 数据不足时使用简单平均
predictions[route] = df_known[df_known['线路编码'] == route]['包裹量'].mean()
continue
# 时间序列预测
try:
ts_model = ARIMA(route_data['包裹量'], order=(1,1,1))
ts_result = ts_model.fit()
forecast = ts_result.forecast(steps=1)[0]
except:
forecast = route_data['包裹量'].mean()
# 机器学习预测
X = route_data[['小时', '分钟', '是否高峰时段', '在途时长_norm']]
y = route_data['包裹量']
if len(X) > 20: # 足够数据才训练模型
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
rf = RandomForestRegressor(n_estimators=50)
rf.fit(X_train, y_train)
ml_pred = rf.predict(X_test.mean().values.reshape(1,-1))[0]
else:
ml_pred = y.mean()
# 融合预测
final_pred = 0.7 * forecast + 0.3 * ml_pred
predictions[route] = max(0, round(final_pred))
return predictions
# 4. 10分钟颗粒度拆解
def disaggregate_to_10min(total_volume, route_data):
# 获取该线路的时间分布
time_dist = route_data.groupby('分钟起始')['包裹量'].mean()
time_dist = time_dist / time_dist.sum()
# 生成完整时间区间
time_slots = pd.date_range("00:00", "23:50", freq="10min").time
time_dist = time_dist.reindex(time_slots, fill_value=0)
time_dist = time_dist / time_dist.sum() # 重新归一化
# 按比例分配
disaggregated = (time_dist * total_volume).round().astype(int)
diff = total_volume - disaggregated.sum()
if diff != 0:
max_idx = disaggregated.idxmax()
disaggregated.loc[max_idx] += diff
return disaggregated
# 主执行流程
if __name__ == "__main__":
# 加载数据
df_hist, df_known = load_data()
df_hist = create_features(df_hist)
# 预测总货量
predictions = predict_volume(df_hist, df_known)
# 示例:拆解特定线路
target_route = "场地3 - 站点83 - 0600"
route_data = df_hist[df_hist['线路编码'] == target_route]
disagg_result = disaggregate_to_10min(predictions[target_route], route_data)
# 可视化
plt.figure(figsize=(12, 5))
disagg_result.plot(kind='bar', color='#1f77b4')
plt.title(f'线路【{target_route}】10分钟颗粒度货量分布预测', fontsize=14)
plt.xlabel('时间区间', fontsize=12)
plt.ylabel('包裹量', fontsize=12)
plt.xticks(rotation=45, fontsize=8)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
# 输出结果表示例
print(f"\n线路 {target_route} 预测结果:")
print(f"- 预测总货量: {predictions[target_route]}")
print("- 前6个时间区间分配:")
print(disagg_result.head(6))
2 问题一:货量预测的模型与求解
在本问题中, 我们的目标是根据提供的历史包裹量数据来预测未来的包裹量, 特别是对于特定线路的未来 24 小时包裹量(2024 年 12 月 15 日 14:00 至 2024 年 12 月 16 日 14:00)。我们将基于历史数据(过去 15 天的每 10 分钟包裹量) 以及预知的数据(未来一天的包裹量预测)来建立预测模型。
2.1 模型假设
为确保模型的有效性,我们做出如下假设:
- 历史数据的代表性:假设过去的包裹量数据能够较好地反映未来的趋势, 因此历史数据对未来的预测至关重要。
- 季节性波动: 包裹量具有季节性波动特性,例如工作日和节假日的包裹量 会有所不同,工作日通常较高,周末较低。
- 外部因素: 我们假设外部因素如节假日、天气等对包裹量的影响较小,且 没有提供这些数据,因此在模型中不考虑这些外部因素。
2.2 模型选择
为了进行货量预测, 我们选择结合深度学习模型(LSTM)与传统时间序列模型 (Prophet)。这种结合能够充分考虑数据中的趋势性、季节性以及长期依赖关系, 从而提高预测的准确性。
2.2.1 LSTM (长短时记忆网络)模型
LSTM 是一种特殊的循环神经网络(RNN),尤其适用于时间序列预测。 LSTM 能够捕捉时间序列中的长期依赖关系,这对于包裹量预测至关重要。
LSTM 的基本公式如下:
ht = σ(Wh xt + Uhht−1 + bh )
其中:
• ht 是当前时间步的隐藏状态。
• Wh 和 Uh 是权重矩阵, bh 是偏置。
• xt 是当前时间步的输入数据。
• σ 是激活函数(如 tanh 或 sigmoid)。
LSTM 模型能够有效地学习包裹量数据中的时间依赖性, 通过调整其隐层和 输入层之间的权重矩阵来更好地捕捉历史数据的模式。
2.2.2 Prophet 模型
Prophet 是由 Facebook 开发的时间序列预测工具, 能够处理数据中的趋势、季 节性和假期效应。 Prophet 的公式为:
y(t) = g(t) + s(t) + h(t) + ϵt
其中:
• y(t) 是时间 t 的预测值,即包裹量。
• g(t) 是趋势部分,表示长期的增长或下降趋势。
• s(t) 是季节性部分,表示季节性波动。
• h(t) 是假期效应,表示节假日的影响。
• ϵt 是误差项,表示模型的随机误差。
Prophet 模型主要通过调整趋势和季节性部分来做出预测,适用于具有强季 节性波动的时间序列数据,且具有较高的鲁棒性。
2.3 模型建立与求解
为了预测未来 24 小时的包裹量,我们将通过以下步骤来建立和求解模型:
-
数据预处理: 将提供的历史包裹量数据按时间顺序整理,并格式化为适用 于 Prophet 和 LSTM 模型的输入数据(即, 时间列和包裹量列)。对于 LSTM 模型,我们需要将数据转换为时序对,以便训练和验证。
-
Prophet 模型训练:使用历史数据训练 Prophet 模型,提取趋势部分、季 节性部分和假期效应部分。这一阶段的目标是捕捉数据中的长期趋势和周 期性波动。
-
LSTM 模型训练: 将历史包裹量数据输入 LSTM 模型, 以学习时间序列 中的长期依赖性。 LSTM 模型将在此基础上生成未来的预测结果, 重点学 习包裹量的变化趋势。
-
模型结合:将 Prophet 模型的预测结果作为 LSTM 模型的输入之一,结 合两者的优点进行最终的包裹量预测。Prophet 主要用于捕捉季节性和趋 势性,而 LSTM 则补充了长期的时间依赖性,从而提高预测的准确性。
-
预测与优化: 基于训练后的模型, 预测未来 24 小时(2024 年 12 月 15 日 14:00 至 2024 年 12 月 16 日 14:00)的包裹量。将模型的输出与实际结果 进行比较,通过误差评估来优化模型。
2.4 误差评估
为了评估模型的准确性,我们将使用以下误差评估指标:
• 均方误差(MSE):
其中,yi 为真实包裹量, i 为预测包裹量。
• 均方根误差(RMSE):
RMSE 能够直接反映预测误差的大小。
• 平均绝对误差(MAE):
MAE 衡量的是预测误差的平均绝对值。