1. 做法
处理这样子的txt文件,需要把误码率读出来
import linecache
import docx
import re
import numpy as np
#count = linecache.getline("C:\\Users\\admin\\Desktop\\470_0.003.txt",4)
list=[]
#a=len(open(r"C:\\Users\\admin\\Desktop\\470_0.003.txt",'rU').readlines())
#a=len(open(r"C:\\Users\\admin\\Desktop\\0_doppler.txt",'rU').readlines())
#a=len(open(r"C:\\Users\\admin\\Desktop\\470_3_1410_1880.txt",'rU').readlines())
a=len(open(r"C:\\Users\\admin\\Desktop\\5_different.txt",'rU').readlines())
i=2
while(i<a):
#str=linecache.getline("C:\\Users\\admin\\Desktop\\470_0.003.txt",i)
#str = linecache.getline("C:\\Users\\admin\\Desktop\\0_doppler.txt", i)
#str = linecache.getline("C:\\Users\\admin\\Desktop\\470_3_1410_1880.txt", i)
str = linecache.getline("C:\\Users\\admin\\Desktop\\5_different.txt", i)
b=str.rindex(' ')
num=float(str[b:])
list.append(num)
i=i+8
print(len(list))
Requestmeanlist=list[200:280:1]
meanValue=np.mean(Requestmeanlist)
print(meanValue)
因为要处理的txt文件是有规律的,所以代码还是很好写的
2.一点闲话
- 因为最开始的结果是保存在word中的,所以下意识的就去找python处理word的方法,比较少,而且还不好理解。下午走在路上突然想到为什么不能把word中的文字放在txt中呢?因为各个语言对于txt的处理都是比较成熟的,于是转到txt处理很快就写好代码了
- 最近分享的比较少,因为比较忙,没怎么看论文,所以就分享的少了,以后决定改变这个坏习惯,论文还是要看起来