归类问题:简单的代价函数和梯度下降----吴恩达机器学习

Logistic Regression--Simplified Cost Function and Gradient Descent

1.Cost fuction

We can compress our cost function’s two conditional cases into one case: C o s t ( h θ ( x ) , y ) = − y l o g ( h θ ( x ) ) − ( 1 − y ) l o g ( 1 − h θ ( x ) ) Cost(h_\theta(x),y)=-ylog(h_\theta(x))-(1-y)log(1-h_\theta(x)) Cost(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))Notice that when y is equal to 1, then the second term ( 1 − y ) log ⁡ ( 1 − h θ ( x ) ) (1-y)\log(1-h_\theta(x)) (1y)log(1hθ(x))will be zero and will not affect the result. If y is equal to 0, then the first term − y log ⁡ ( h θ ( x ) ) -y \log(h_\theta(x)) ylog(hθ(x))will be zero and will not affect the result.
We can fully write out our entire cost function as follows: J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = - \frac{1}{m} \displaystyle \sum_{i=1}^m [y^{(i)}\log (h_\theta (x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))] J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]A vectorized implementation is:
h = g ( X θ ) h=g(Xθ) h=g(Xθ)
J ( θ ) = 1 m ⋅ ( − y T l o g ( h ) − ( 1 − y ) T l o g ( 1 − h ) ) J(θ)=1m⋅(−y^Tlog(h)−(1−y)^Tlog(1−h)) J(θ)=1m(yTlog(h)(1y)Tlog(1h))

2.Gradient Descent

Remember that the general form of gradient descent is: R e p e a t { θ j : = θ j − α ∂ ∂ θ j J ( θ ) } Repeat \{ \theta_j:=\theta_j-\alpha \frac{\partial }{\partial \theta_j}J(\theta) \} Repeat{θj:=θjαθjJ(θ)}We can work out the derivative part using calculus to get: R e p e a t { θ j : = θ j − α m ∑ i = 1 m ( h θ ( x ( i ) − y ( i ) ) x j ( i ) } Repeat \{ \theta_j:=\theta_j-\frac{\alpha}{m} \sum_{i=1}^{m}(h_{\theta}(x^{(i)}-y^{(i)}) x_j^{(i)} \} Repeat{θj:=θjmαi=1m(hθ(x(i)y(i))xj(i)}Notice that this algorithm is identical to the one we used in linear regression. We still have to simultaneously update all values in theta.
A vectorized implementation is: θ : = t h e t a − α m ( g ( X θ ) − y ⃗ ) ] \theta:=theta-\frac{\alpha}{m}(g(X\theta)-\vec{y})] θ:=thetamα(g(Xθ)y )]

3.supplementary

求导的过程还在推导

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值