Mobileye REM地图如何解决高精地图落地难点

本文探讨了高精地图在自动驾驶中的重要性,尤其是规模化、鲜度和精度的挑战,Mobileye通过众包和REM技术解决了这些问题,强调了局部精度和数据处理流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

1. 为什么需要高精地图

理论上来讲,可以在车载系统检测和获取所有道路信息(可行驶路径、车道优先级、红绿灯与车道的关联关系、车道与人行横道与红绿灯的关系等),但是目前的AI能力无法保证实现很高的MTBF(Mean Time Between Failures,平均无故障时间),所以需要提前把这些信息都准备好。

图片

2. 高精地图的挑战

2.1. 规模化-Scale

如果自动驾驶车辆只在一个区域、一个城市、或者几个城市运营,那就不存在规模化的问题。但是2025年之后,自动驾驶会在消费者层面全面落地,用户需要驾车到任意想去的地方,在这种场景下,Scale是一个无法规避的问题。

2.2. 鲜度-Fresh

理想情况下,地图是在实时更新的。当物理环境发生变化时,需要实时反映到地图上。月级更新、甚至天级更新都是不够的,我们需要做到分钟级,甚至更短。

2.3. 精度-Accuracy

车载系统(OnBoard System)检测的车辆和行人需要与高精地图(High Definiation Map)实现厘米级精度的匹配,因此地图的精度至关重要。

图片

3. 通用高精地图制作方法的缺陷

图片

3.1. 全局坐标系下厘米级精度不是必需的

AV车辆行驶过程中只关注周围几百米范围即可,所以只要这个范围内的足够准确即可。至于几公里之外的全局精度,Who Care...

图片

3.2. 语义层数据生产难以自动化

图片

如下图所示,没有车道线的双向车道,单从图像观察,难以识别它的Drive Path。

图片

如下图所示,转向规则千奇百怪:禁止红灯右转,完全停车后允许红灯右转,绿灯禁止左转,绿灯Yield后允许左转...

图片

如下图所示,红绿灯异常复杂,识别车道、人行横道与红绿灯的关联关系难度很大...

图片

如下图所示,除非地图可以表达所有的3D要素,否则很难自动化的计算出车道的最优Stop/Yield Point。但是表达所有的3D信息对于地图来说又是不现实的...

图片

影响车辆行驶速度的因素有很多,道路几何、限速、文化等,难以量化,但它对Smooth Driving体验至关重要...

图片

4. Mobileye如何解决这些问题

scalability依赖众包数据生成Millions Map Agents;Accuracy不是全局的Accuracy,而是局部的Accuracy,相对于道路上的静态元素位置。

图片

REM的处理流程如下,首先从成百上千辆车获取检测信息(没有使用差分GPS,而是使用了普通的GPS),这些数据传送到云端;每辆车Detection的角度不同,由于遮挡等原因,每辆车检测的landmark也有差异,将这些数据进行Alignment处理,生成高精度的地图数据;最后,Modeling And Semantics负责生成地图的语义数据。

图片

4.1. Harvesting

下图中黄色的框是车辆检测的landmarks和lane marks,同时车辆会尝试检测driving path等语义信息,一辆车可能检测不准确,但是成百上千的过路车辆会让检测结果越来越好。

Mobileye Harvesting的数据量为10K/公里,这些检测的数据会被发送到云端。

图片

4.2. Aligning Drives

检测每个RSD中每个元素的6D Pose,然后对齐相同位置的元素,得到厘米度精度的driving path等信息。

图片

由于GPS存在误差,每个车辆检测的道路元素位置都存在噪声,所以只依靠简单的位置求均值是不可行的。

图片

Align之后可以明显的看到两条Driving Path(蓝色)和两侧的道路边界(红色)。对齐的过程是靠几何运算进行。

图片

仅仅靠聚类(Clustering)和Spline Fiting得到下图右上角的结果,这个结果不是特别理想。后来通过神经网络生成高精度地图,效果好了很多。

图片

5. 为什么语义理解离不开众包

如下左图所示,通过众包数据可以在没有Lane Marking的道路上获取Driving Path。

如下右图所示,众包数据提供了复杂场景下的所有可通行路径。

图片

如下图所示,通过众包数据可以获得红绿灯与车道的关联关系、Yield Sign的Stop Point、Crosswalk与红绿灯的关联关系等。

图片

如下左图所示,通过检测哪个Drive Path的Stop Point比较多,我们可以从众包数据中获取到没有Traffic Sign情况下各个道路的路权优先级。

如下中图所示,我们可以从众包数据学习到在路口其它司机的停车位置。

如下右图所示,从众包数据可以学习到,在无保护左转的场景下车辆的Stop Point。

图片

众包数据是获得各个道路Common Speed的唯一高效的方法,Common Speed提供了当道路没有车辆时候AV车的目标行驶速度。采用这种方法可以使得无论在哪个国家、地区,或者不同的道路类型,AV车都可以自然的融入车流。

图片

6. 总结

到目前为止,Mobileye与超过6家汽车制造厂商合作,每天可以覆盖800万公里的路网更新。预计到2024年,每天覆盖的路网会达到10亿公里。

图片

说明:本文所有内容都来源于Mobileye CEO Amnon Shashua教授在2021 CES的分享。

YouTube链接:https://www.youtube.com/watch?v=B7YNj66GxRA&t=301s

03-19
### IEEE 802.1Q VLAN Tagging Protocol Standard IEEE 802.1Q 是支持虚拟局域网(VLAN)的标准协议之一,通常被称为 Dot1q。该标准定义了一种用于以太网帧的 VLAN 标记系统以及交换机和桥接器处理这些标记帧的操作流程[^2]。 #### 协议结构概述 IEEE 802.1Q 的核心功能在于通过在以太网数据帧中插入特定字段来实现 VLAN 标签的功能。这种标签使得网络设备能够识别哪些流量属于哪个 VLAN,并据此执行转发决策。具体来说: - **Tag Header**: 在原始以太网帧头部增加了一个额外的 4 字节字段作为 VLAN 标签头。这四个字节包含了以下部分: - **Priority Code Point (PCP)**: 使用 3 比特表示优先级级别,范围从 0 到 7,主要用于 QoS 控制。 - **Canonical Format Indicator (CFI)**: 这是一个单比特位,在传统以太网环境中设置为零。 - **VLAN Identifier (VID)**: 使用 12 比特标识具体的 VLAN ID,理论上可以支持多达 4096 个不同的 VLAN(编号从 0 至 4095),其中某些特殊值保留给内部用途或管理目的。 #### 数据包处理机制 当一个带有 VLAN tag 的数据包进入支持 IEEE 802.1Q 的交换机时,它会依据此标签决定如何路由或者过滤该数据流。如果目标端口不属于同一 VLAN,则不会传输至其他无关联的物理接口上;反之亦然——只有相同 VLAN 成员之间才允许互相通信除非经过路由器跨网段访问[^1]。 此外,为了简化管理和配置过程并增强互操作性,还引入了一些辅助性的子协议和服务组件比如 GARP(通用属性注册协议)。GARP 可帮助分发有关 VLAN 成员资格的信息到各个连接节点以便动态调整其行为模式而无需频繁手动干预[^3]。 以下是创建带 VLAN TAG 的 Python 示例代码片段展示如何模拟构建这样的 Ethernet Frame: ```python from scapy.all import Ether, Dot1Q, IP, sendp def create_vlan_packet(src_mac="00:aa:bb:cc:dd:ee", dst_mac="ff:ff:ff:ff:ff:ff", vlan_id=100, src_ip="192.168.1.1", dst_ip="192.168.1.2"): ether = Ether(src=src_mac, dst=dst_mac) dot1q = Dot1Q(vlan=vlan_id) ip_layer = IP(src=src_ip, dst=dst_ip) packet = ether / dot1q / ip_layer return packet packet = create_vlan_packet() sendp(packet, iface="eth0") # Replace 'eth0' with your network interface name. ``` 上述脚本利用 Scapy 库生成包含指定源地址、目的地址及所属 VLAN 编号的数据报文并通过选定的网卡发送出去测试实际效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值