
多模态SLAM
文章平均质量分 95
激光视觉SLAM
瞻邈
老菜鸟一个。
展开
-
旷视科技和东北大学联合提出:多LiDAR与相机系统的无靶标内外参联合标定方法
精确的时空标定是多传感器融合的前提,然而由于传感器通常不同步,并且相机与LiDAR的视场范围不重叠,这为内外参标定带来了挑战。为了解决这一问题,本文提出了一种基于连续时间和捆集调整的标定流程,能够同时完成内参和外参(包括6自由度的变换和时间偏移)的标定。此方法不依赖视场重叠或标定板,首先通过运动结构(SfM)建立相机间的数据关联,完成相机内参的自标定。接着通过自适应体素地图构建LiDAR间的数据关联,在地图内优化外参标定。最后将LiDAR地图的强度投影与相机图像进行特征匹配,实现内参与外参的联合优化,此流程转载 2025-03-27 23:19:53 · 92 阅读 · 0 评论 -
R3LIVE++论文阅读
为了确保稳健和快速的收敛,我们设计了一个两步流水线,如图所示,其中在第一步 (即,帧到帧 VIO) 我们利用帧到帧光流来跟踪最后一帧中观察到的地图点,并通过最小化被跟踪点的透视 n 点 (PnP) 重投影误差来获得系统状态的粗略估计。然后,在第二步骤 (即帧到地图 VIO) 中,通过最小化地图点的辐射度与当前图像中它们的投影位置处的像素强度之间的差来进一步细化状态估计。此外,我们还记录该点的其他必要信息,包括点的估计误差的协方差,以及创建和更新该点时的时间戳。曝光时间 r 在我们的工作中是在线估计的。原创 2023-09-09 00:00:19 · 699 阅读 · 0 评论 -
LE-VINS:固态激光雷达增强的视觉惯性导航系统
采用非重复扫描模式的低成本固态激光雷达,如Livox Mid-70,通过累积一段时间的激光雷达点云,可以获得相对稠密的点云地图,从而有效覆盖相机图像的大部分区域,为视觉特征和激光雷达点云深度关联带来了便利,如图1所示。3、估计的深度信息不仅被用作路标点的初始深度,还被用于在FGO中构建激光雷达深度因子,以直接约束路标点的深度。2、提出了一种鲁棒的深度关联算法,实现了视觉特征和INS位姿辅助的固态激光雷达点云的有效关联,精确估计了视觉路标点的深度。图2: LE-VINS的系统框图(虚框内为该工作内容)原创 2023-04-08 14:17:40 · 1308 阅读 · 0 评论 -
LVI-SAM源码解析(一):论文阅读
LVI-SAM是一种基于平滑化和映射实现的激光雷达-视觉-IMU紧耦合SLAM方法,能够实现高精度、高鲁棒性地实时状态估计和地图构建。LVI-SAM建立于包含两个子系统的因子图上:视觉-IMU子系统(VIS)和激光-IMU子系统(LIS),两个子系统采用紧耦合设计方式。其中VIS利用LIS进行初始化,利用LiDAR测量的深度信息提高精度,LIS利用VIS的估计结果作为扫描匹配初始值。回环检测首先由VIS识别,再由LIS进一步确认。两个子系统中任意一个失效了,LVI-SAM仍可以正常工作,这说明它在原创 2022-12-12 11:25:41 · 2886 阅读 · 6 评论 -
FAST-LIVO:快速紧耦合稀疏直接激光视觉里程计
多传感器融合被证明是一种能够在SLAM任务中取得准确和鲁棒位姿估计的有效解决方案,因而在机器人应用中具有无限可能。本文提出了FAST-LIVO方法,一种快速的雷达-惯性-视觉里程计,其中包含了两个紧耦合的直接里程计子系统:一个VIO子系统和一个LIO子系统。LIO子系统registers激光的原始点云数据(而不是平面或者边上的特征点)到一个增量点云地图中。点云地图中的三维点带有颜色纹理信息,这样不用提取任何的视觉特征点(ORB或者Fast角点),就可以被VIO子系统通过最小光度误差与最新的图像帧对齐。为了进原创 2022-07-18 13:35:42 · 6067 阅读 · 0 评论 -
R3LIVE:一个实时鲁棒,带有RGB颜色信息的激光雷达-惯性-视觉紧耦合系统
本文中,我们提出了一种称为 R3LIVE 的新型 LiDAR-Inertial-Visual 传感器融合框架,它利用 LiDAR、惯性和视觉传感器的测量来实现鲁棒和准确的状态估计。R3LIVE 包含两个子系统,即激光雷达-惯性里程计 (LIO) 和视觉-惯性里程计 (VIO)。LIO 子系统 (FAST-LIO) 利用 LiDAR 和惯性传感器的测量结果构建全局地图(即 3D 点的位置)的几何结构。VIO 子系统利用视觉-惯性传感器的数据来渲染地图的纹理(即 3D 点的颜色)。更具体地说,VIO 子系统通过原创 2022-07-17 14:07:30 · 4287 阅读 · 0 评论 -
LVI-SAM:激光-IMU-相机紧耦合建图
摘要:我们提出了一个通过平滑和建图实现激光-视觉-惯性里程计的紧耦合框架LVI-SAM,其实现了高精度和鲁棒性的实时状态估计和地图构建。LVI-SAM采用因子图,由两个子系统组成:一个视觉惯性系统VIS和一个激光雷达惯性系统LIS。这两个子系统以紧耦合的方式,其中VIS利用LIS的估计进行初始化。利用激光雷达测量方法提取视觉特征的深度信息,提高了VIS的精度。反过来,LIS利用VIS对位姿进行估计,并作为点云配准的初始值。首先由VIS进行闭环检测,再由LIS进一步细化。当两个子系统中的一个发生故障时,LVI原创 2022-07-17 08:51:00 · 2984 阅读 · 0 评论