
地图与定位
文章平均质量分 85
自动驾驶地图定位技术
瞻邈
老菜鸟一个。
展开
-
车道拓扑推理演进:从程序化建模到车载传感器
车道拓扑推理技术在高精(HD)建图和自动驾驶应用中发挥着至关重要的作用。虽然近年来在该领域中取得了重大进展,但是很少有文献综合概述这些工作。本项调研系统性地回顾了车道拓扑推理方法的演变和现状,将其分为三种主要范式:基于程序化建模的方法、基于航拍图像的方法和基于车载传感器的方法。本文分析了从早期基于规则的方法到现代基于学习的解决方案的进展,这些基于学习的解决方案利用了transformers、图神经网络(GNNs)和其它深度学习架构。转载 2025-04-29 18:04:36 · 38 阅读 · 0 评论 -
高精度组合导航里的松耦合、紧耦合、深耦合
高精度定位,是自动驾驶车辆一切丰满理想实现的前提。它用于判断自动驾驶功能是否处于可激活的设计运行条件内;它用于支撑自动驾驶车辆的全局路径规划;它用于辅助自动驾驶车辆的变道、避障策略。转载 2023-02-25 18:42:31 · 5426 阅读 · 0 评论 -
自动驾驶高精定位
定位是高等级自动驾驶的基础,但在高速NOA和城区NOA等场景中,如何能够稳定地在各种工况下实现高精度定位将是个难题。一个常见的问题是:高速NOA、城区NOA功能需要实现多高精度的定位?需要多高精度的IMU、组合导航和多少种传感器?转载 2023-02-25 17:59:46 · 1182 阅读 · 0 评论 -
高精度地图的现状与发展瓶颈
随着自动驾驶赛道的持续升温,高精度地图作为汽车感知周围环境信息的重要组成部分用于辅助安全驾驶决策和判断,逐渐成为行业共识。高精度地图需要具备高精度、多要素、高“鲜”度等特点,它不同于以往传统导航地图,因此在制作工艺上也与传统导航地图差异相当明显。然而,L4以上的自动驾驶汽车一直并未商业化落地,除激光雷达等车载传感器等硬件成本居高不下之外,高精度地图的发展可能也是掣肘因素之一。转载 2022-12-12 21:26:12 · 527 阅读 · 0 评论 -
自动驾驶软件工程课程之SLAM(2)
本文聚焦自动驾驶软件工程中的重要一环——同步定位与地图构建(SLAM)技术。文章首先介绍了SLAM的基本概念及其在自动驾驶领域的应用价值,随后详细解析了SLAM技术的核心原理,包括传感器数据的采集与处理、地图的构建与更新以及定位算法的实现等。通过本课程的学习,读者将能够深入理解SLAM技术的运作机制,掌握相关的软件开发技能,为自动驾驶系统的设计与实现提供有力支持。此外,文章还探讨了SLAM技术的发展趋势和挑战,为读者提供了广阔的视野和深入的思考。原创 2022-11-01 13:49:31 · 245 阅读 · 0 评论 -
自动驾驶软件工程课程之SLAM(1)
本篇博客将深入探讨自动驾驶软件工程课程中的关键技术之一——SLAM(同时定位与地图构建)。博客首先概述了SLAM技术的基本概念和原理,揭示了它在自动驾驶系统中的重要性。随后,详细介绍了SLAM系统的组成部分,包括传感器数据收集、特征提取与匹配、位姿估计和地图构建等关键环节,并分析了不同SLAM算法的特点和适用场景。此外,博客还探讨了SLAM技术在实际应用中所面临的挑战,如环境动态变化、传感器噪声和计算资源限制等问题,并分享了相应的解决方案和优化策略。原创 2022-11-01 13:48:28 · 321 阅读 · 0 评论 -
自动驾驶软件工程课程系列2:定位与地图
位置:质点在坐标系中的坐标。在全局定位中指经纬度或等价表示,可以包含高度信息(三维),也可以不包含高度信息(二维);在相对定位中指相对于某个坐标系的坐标位置,可以是二维或者三维。姿态:指刚体的朝向,可能是一维或者三维。位置和姿态合称位姿。如果使用的是三维坐标系,则位置是三维,姿态是三维,位姿是六维;如果使用的是二维坐标系,则位置是二维,姿态是一维,位姿是三维。原创 2022-10-22 22:10:21 · 256 阅读 · 0 评论 -
定位技术的关键:基于环境特征的地图匹配(三)
地图匹配定位是根据车辆相对于当地地标的位置来进行定位。在许多情况下,我们有提供当地地标的地图作为参考框架。基于先验地图,我们匹配历史中最相似的地图子集(图像/点云/特征点),根据匹配到的地图子集所提供的历史位姿真值、特征点坐标真值,计算点对间的变换矩阵,求解当前定位。地图匹配定位通常会输出相对的XYZ坐标,滚动/俯仰/偏航數值,或表示方向和空间自由的四元数。最流行的地图匹配定位算法有迭代最近点 (ICP) 以及正态分布变换 (NDT)。为了进行地图匹配定位,我们必须有某种形式的传感器输入,例如激光雷达,转载 2022-10-05 14:48:40 · 1716 阅读 · 0 评论 -
定位技术:自动驾驶里程计技术对比(二)
在上一篇自动驾驶定位深度学习概述中,我们分析了业界基于信号+航迹推算+环境特征匹配的融合方案,并讨论了深度学习在定位和地图构建未来可能的应用以及深度学习的优缺点。在这一篇,我们将对深度学习在里程计方面的应用进行更细节的探讨,并对不同解决方案进行性能对比。⾥程计属于航迹推算方案,它持续跟踪汽车的⾃我运动并估算相对姿势,在给定初始状态的情况下,通过整合这些相对姿势来重建全局轨迹,保持对运动变换估算的⾜够准确,以实现全局范围内的⾼精度定位。本文讨论主要集中在惯性里程计算和视觉⾥程计以及融合的深度学习⽅法,因为转载 2022-08-28 15:34:56 · 1712 阅读 · 0 评论 -
定位技术:自动驾驶的基础(一)
基于深度学习的定位和构建地图最近引起了极⼤的关注,它提供的解决⽅案不是通过利⽤物理模型或⼏何理论来创建⼿⼯设计的算法,⽽是提供了⼀种以数据驱动的⽅式来解决问题的替代⽅案。受益于不断增加的数据量和计算能⼒,这些⽅案正在快速发展成为⼀个新领域,该领域提供准确和强⼤的系统来跟踪运动,并估计场景及其结构以⽤于现实世界的应⽤。深度学习涵盖⼴泛的主题,从学习⾥程估计、构建地图、到全局定位和同步定位与构图(SLAM),为研究⼈员解决定位和构建地图问题提供了未来新的方向。......转载 2022-08-28 15:29:29 · 897 阅读 · 0 评论 -
高精地图生成技术综述
过去几年,自动驾驶一直是最受欢迎和最具挑战性的话题之一。在实现完全自动驾驶的道路上,研究人员利用了各种传感器,如激光雷达、摄像头、IMU和GPS,并开发了用于自动驾驶应用的智能算法,如目标检测、目标分割、避障和路径规划。高精地图近年来备受关注,由于其定位精度高和信息量大,立即成为自动驾驶的关键部件之一。从Baidu Apollo、NVIDIA和TomTom等,研究人员已经为不同场景和目的创建高精地图,用于自动驾驶。...转载 2022-07-12 19:55:24 · 1406 阅读 · 0 评论 -
QGIS安装以及使用教程
Quantum GIS(QGIS)是相当友好的开源地理信息系统,使用GNU(General Public License)授权,属于 Open Source eospatial Foundation(OSGeo)的官方计划。在 GNU 这个授权下,开发者可以自行检阅与调整程序代码,并保障让所有使用者可以免费且自由地修改程序。QGIS 的目标是成为一个使用简单的 GIS,提供了常见的功能与图征。借着核心图征提供基本功能与附加组件(Python 或 C++)持续地扩充,让使用者可以浏览、管理、编辑、分析数据原创 2022-07-08 18:58:50 · 24563 阅读 · 0 评论 -
基于先验地图的视觉定位
给定一份高精度地图或环境模型,给定相机(不限于单目,双目,多目,针孔或者鱼眼),输出相对于这份地图的高精度的相机的pose,在这个过程中其他传感器信息是可选的(optional)转载 2022-01-30 15:34:51 · 1193 阅读 · 0 评论 -
智能网联汽车高精地图白皮书 (2020)
在以汽车电动化、智能化、联网化、共享化为特征的汽车产业进化趋势下,自动驾驶汽车成为全球的重要研究热点和汽车产业发展战略方向,并带动智能交通、智慧城市等产业建设。高精地图作为自动驾驶重要的共性基础技术,具备不可替代的作用,高精地图能够为汽车构建“长周期记忆”、实现汽车超视感知,并有效提高算法效率和安全冗余。随着自动驾驶技术日趋成熟,高精地图成为巨头征战的新战场。根据高盛对全球高精地图市场的预判,2020年将达21亿美元;到 2025 年,市场规模会扩大到 94 亿美元。转载 2021-06-05 14:42:16 · 16511 阅读 · 0 评论 -
Mobileye REM地图
为什么需要高精地图理论上来讲,可以在车载系统检测和获取所有道路信息(可行驶路径、车道优先级、红绿灯与车道的关联关系、车道与人行横道与红绿灯的关系等),但是目前的AI能力无法保证实现很高的MTBF(Mean Time Between Failures, 平均无故障时间),所以需要提前把这些信息都准备好。高精地图的挑战规模化-Scale如果自动驾驶车辆只在一个区域、一个城市、或者几个城市运营,那就不存在规模化的问题。但是2025年之后,自动驾驶会在消费者层面全面落地,用户需要驾车到任意想..转载 2021-05-23 14:53:26 · 2571 阅读 · 0 评论 -
Mobileye REM地图如何解决高精地图落地难点
理论上来讲,可以在车载系统检测和获取所有道路信息(可行驶路径、车道优先级、红绿灯与车道的关联关系、车道与人行横道与红绿灯的关系等),但是目前的AI能力无法保证实现很高的MTBF(Mean Time Between Failures, 平均无故障时间),所以需要提前把这些信息都准备好。下图中黄色的框是车辆检测的landmarks和lane marks,同时车辆会尝试检测driving path等语义信息,一辆车可能检测不准确,但是成百上千的过路车辆会让检测结果越来越好。理想情况下,地图是在实时更新的。转载 2021-02-12 15:55:02 · 5867 阅读 · 1 评论