
特征与匹配
文章平均质量分 93
描述子、特征、匹配
瞻邈
老菜鸟一个。
展开
-
LiftFeat:3D几何感知的局部特征匹配新颖网络 (ICRA‘25)
LiftFeat是一种创新的轻量级网络,旨在通过融合2D和3D信息来增强极端条件下的局部特征匹配。该方法利用深度图提取的表面法线信息,结合2D描述符,通过3D几何感知特征增强模块(3D-GFL)提升特征区分能力。LiftFeat网络架构包括共享特征编码模块和多任务头,用于预测关键点、描述符和表面法线。训练过程中,使用单目深度估计模型生成表面法线标签,并通过关键点预测、表面法线估计和描述符损失进行监督。实验结果表明,LiftFeat在相对位姿估计、单应性估计和视觉定位等任务中表现出色,尤其在光照剧烈变化、低纹转载 2025-05-17 18:19:35 · 39 阅读 · 0 评论 -
RDD: Robust Feature Detector and Descriptor using Deformable Transformer
本文介绍了一种名为RDD的鲁棒特征检测与描述框架,该框架通过可变形Transformer技术,在三维计算机视觉任务中实现了高效的关键点检测和描述符提取。RDD采用双分支架构,分别使用全卷积网络和基于Transformer的结构来处理关键点检测和描述符提取,有效解决了传统方法在大基线相机运动、显著光照变化和尺度差异等复杂条件下的不足。通过可变形注意力机制,RDD能够选择性关注关键位置,降低计算复杂度,同时保持几何不变性和全局上下文的学习能力。实验结果表明,RDD在多个标准基准测试上均优于当前最先进的方法,并在转载 2025-05-16 14:44:24 · 32 阅读 · 0 评论 -
面向大规模户外场景的多源异构点云精细配准方法
为全面表征大规模户外场景的三维信息,多平台、多传感器、多时相的激光点云采集与配准技术快速发展。然而受户外环境复杂性及观测平台硬件性能差异影响,空间坐标系不一致的多源异构点云在精确高效配准方面面临巨大挑战,包括显著噪声干扰、遮挡、数据缺失及几何异构性等问题。本文提出基于全连接图和热传导模型的异构点云精细配准方法:首先采用高斯概率分布框架对分类特征基元建立初始对应关系;继而通过低级语义关联与刚性变换相容性检测快速剔除异常值导致的误匹配;转载 2025-04-29 16:32:43 · 56 阅读 · 0 评论 -
FACT:多项式错位分类用于点云配准
我们提出FACT方法,用于预测已配准激光雷达点云对的配准质量(即配准误差)。该方法可应用于大规模自动配准3D模型的质量保证。FACT从配准点云对中提取局部特征,通过基于点变换器的网络处理这些特征以预测失准类别。我们将前人研究的二元配准误差分类推广为多项式失准分类,为此设计了结合交叉熵和Wasserstein距离的自定义分类回归损失函数,实验证明其性能优于直接回归和先前的二元分类。转载 2025-04-29 16:29:42 · 34 阅读 · 0 评论 -
EdgeRegNet:基于边缘特征的图像与激光雷达点云多模态配准网络
跨模态数据配准长期以来是计算机视觉领域的关键任务,在自动驾驶与机器人技术中具有广泛应用。准确鲁棒的配准方法对于对齐不同模态数据至关重要,构成多模态传感器数据融合的基础,能提升感知系统的准确性与可靠性。相机采集的2D图像与激光雷达(LiDAR)采集的3D点云间的配准任务通常被视为视觉位姿估计问题。现有方法通过利用不同模态的高维特征相似性识别像素-点对应关系,再采用最小二乘法等位姿估计技术。但由于计算限制,现有方案常需对原始点云和图像数据进行降采样,不可避免地导致精度损失。转载 2025-04-29 16:24:44 · 58 阅读 · 0 评论 -
跨数据集配准SOTA,解锁LiDAR点云配准中的泛化能力
本文揭示了LiDAR场景中不一致的几何表示导致交叉注意力模块限制了网络的泛化能力。基于这一发现,我们提出了UGP,一种剪枝框架,旨在增强LiDAR点云配准的泛化能力。UGP消除了交叉注意力,引入了渐进式自注意力模块和BEV特征提取模块,使网络能够优先考虑局部空间关联并捕捉场景元素的语义信息。这减少了点云中的歧义,并提升了泛化性能。大量实验表明,我们的方法有效应对了不同数据分布带来的挑战,包括跨距离和跨数据集场景。p_ip_j。转载 2025-04-08 23:17:01 · 133 阅读 · 0 评论 -
MINIMA:通用图像匹配
本文提出了一个名为MINIMA的统一匹配框架,适用于任何跨模态情况。这是通过使用有效的数据引擎填补数据鸿沟来实现的,该引擎可以自由地将廉价的RGB数据扩展到大型多模态数据。构建的MD-syn数据集包含了丰富的场景和精确的匹配标签,并支持任何先进匹配模型的训练,显著提高了在未见跨模态情况下的跨模态性能和零样本能力。转载 2025-03-28 10:19:20 · 88 阅读 · 0 评论 -
ProTracker: Probabilistic Integration for Robust and Accurate Point Tracking论文阅读
该研究介绍了一种稳健的跟踪框架,通过概率整合将光流整合与长期对应关系相结合,以实现动态视频序列中准确且平滑的点跟踪。通过引入目标级过滤、双向概率整合以及几何感知特征提取,该研究的方法有效减轻了漂移问题,处理了遮挡情况,并重新定位了暂时消失的点。该研究的方法在处理复杂运动和长时间间隔方面优于传统方法,展示了整合短期和长期信息以实现可靠跟踪的优势。尽管该研究的方法提供了稳健的跟踪,但其对关键点提取的测试时训练的依赖相比监督方法降低了效率——这是自监督跟踪方法的常见局限。转载 2025-03-23 16:16:56 · 82 阅读 · 0 评论 -
点云配准算法
点云配准(Point Cloud Registration)算法指的是输入两幅点云 Ps (source) 和 Pt (target),输出一个变换T(即旋转R和平移t)使得 T(Ps)和Pt的重合程度尽可能高。常用的有NDT、ICP。本文主要介绍ICP(Iterative Closest Point)算法及其各种变体。点云配准首先要知道两组点云的匹配关系,对于视觉三维点来说,可以通过视觉特征匹配来获取,对于雷达点云,可以通过最近邻匹配来获取,关于匹配本文不深入介绍。知道点云的匹配关系后,通过粗配准原创 2022-12-08 20:24:58 · 11447 阅读 · 0 评论 -
SIFT描述子
尺度不变特征转换(SIFT, Scale Invariant Feature Transform)是图像处理领域中的一种局部特征描述算法. 该方法于1999年由加拿大教授David G.Lowe提出,申请了专利,其专利属于英属哥伦比亚大学. SIFT专利在2020年3月17日之后到期,现在只需更新cv版本即可免费使用.SIFT算法不仅只有尺度不变性,当旋转图像,改变图像亮度,移动拍摄位置时,仍可得到较好的检测效果.其实,在我们生活中,SIFT算法还是有所应用的,比如,我们手机上的全景拍摄,当我们拿着原创 2022-10-10 13:58:03 · 1929 阅读 · 0 评论 -
SuperGlue:Learning Feature Matching with Graph Neural Networks论文阅读
ETHZ ASL与Magicleap联名之作,CVPR 2020 Oral(论文见文末),一作是来自ETHZ的实习生,二作是当年CVPR2018 SuperPoint的作者Daniel DeTone。Sarlin小伙之前在MagicLeap实习,在ETHZ(苏黎世联邦理工) ASL 完成硕士,目前在 ETHZ CVG就读博士,不是TUM(慕尼黑工业大学)的CVG。转载 2022-08-19 13:44:51 · 2903 阅读 · 0 评论 -
特征匹配算法GMS (Grid-based Motion Statistics) 理论与实践
GMS一种基于运动统计的快速鲁棒特征匹配过滤算法,能明显地改善匹配结果,目前已经集成进入OpenCV之中项目地址:GMS: Fast and Robust Feature Matcher (CVPR 17 & IJCV 20) – Jia-Wang Bian论文标题:GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence代码地址:GitHub - JiawangBian/GMS-Feature-Match原创 2022-08-19 12:01:52 · 7788 阅读 · 0 评论 -
PMVS:多视图匹配经典算法
Multi-View Stereo(MVS)多视图立体匹配与三维重建的任务是:以已知内外参数的多幅图像(SfM的结果)为输入,重建出真实世界中物体/场景的三维模型。本文作者提出了PMVS的经典算法,深入了解传统算法的实现效果,可以帮助我们与基于深度学习的方法进行对比,对“如何评估多个视图间相似性”这一问题有更深刻的认识,希望能对相关研究人员有一定的参考帮助。————————————————版权声明:本文为CSDN博主「Tom Hardy」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原转载 2022-07-19 13:29:58 · 1045 阅读 · 0 评论