
激光SLAM
文章平均质量分 91
激光SLAM
瞻邈
老菜鸟一个。
展开
-
LightLoc:快速高效的户外激光雷达定位新方法
论文标题:LightLoc: Learning Outdoor LiDAR Localization at Light Speed代码:https://github.com/liw95/LightLoc论文:https://arxiv.org/abs/2503.17814是一种新型户外激光雷达(LiDAR)定位方法,旨在解决现有场景坐标回归方法训练时间过长的问题。LightLoc 通过冻结场景无关的特征主干网络并仅训练场景特定的预测头来加速学习过程。转载 2025-04-09 13:56:44 · 117 阅读 · 0 评论 -
D-LI-Init: LiDAR-惯性系统动态初始化方法
D-LI-Init是一种LiDAR-惯性系统的动态初始化方法。实验证明,该方法适用于多种平台,能够在不依赖特定运动模式的情况下提供准确的初始值。局限性:该方法的性能高度依赖于LiDAR里程计的精度未来工作:将进一步研究如何提升LiDAR里程计的准确性。转载 2025-04-08 22:21:49 · 81 阅读 · 0 评论 -
KISS-SLAM:极简设计、极少参数调整、快于传感器帧率
KISS-SLAM是一种简单但高效的 LiDAR SLAM 方法。该方法完全基于 LiDAR 扫描数据,无需额外传感器即可计算机器人轨迹和环境地图。我们的方法采用极简设计,能够适用于各种复杂环境,如高速公路行驶、手持设备和电动平衡车。此外,该系统不依赖特定的测距技术或扫描模式,仅假设点云数据是机器人在环境中移动时连续生成的。我们实现并评估了该方法,并与现有技术进行了比较,以支持本文提出的所有核心论点,同时公开了代码。转载 2025-03-28 10:12:38 · 117 阅读 · 0 评论 -
DualQuat-LOAM:基于双四元数参数化的高精度激光雷达里程计与建图方法
我们提出了DualQuat-LOAM激光雷达里程计方法,该方法基于边缘、表面和稳定三角形描述符(STD)的双四元数参数化。这种方法能够以紧凑的形式表示系统的旋转和平移。为实现这一目标,我们对优化器也进行了双四元数参数化,从而确保了姿态估计过程中的完全一致性。实验结果表明,该方法仅使用激光雷达传感器的点云即可完成姿态估计,无需额外传感器的集成。转载 2025-03-27 23:09:16 · 271 阅读 · 0 评论 -
Point-LIO:鲁棒高带宽激光惯性里程计
现有系统都是基于帧的,类似于VSLAM系统,频率固定(例如10Hz), 但是实际上LiDAR是在不同时刻进行顺序采样,然后积累到一帧上,这不可避免地会引入运动畸变,从而影响建图和里程计精度。此外,这种低帧率会增加延时,限制系统带宽(里程计带宽的定义类似动态系统的带宽,即系统增益降至0.707以下的频率,表示里程计在能够满意地估计时可以运动多快)。1) 提出了一种逐点(point-wise) LIO框架,该框架在实际采样时间融合激光雷达点,而不会累积到帧中。去除点累积消除了帧内运动失真,并允许以接近点采样率的原创 2024-06-08 17:46:33 · 2175 阅读 · 0 评论 -
Large-Scale LiDAR Consistent Mapping using Hierarchical LiDAR Bundle Adjustment
重建精确一致的大规模激光雷达点云地图对于机器人应用至关重要。现有的基于位姿图优化的解决方案,尽管它在时间方面是有效的,但不能直接优化建图的一致性。激光雷达集束调整(BA)最近被提出来解决这个问题;但是在大尺度规模建图上太费时间了。为了解决这一问题,本文提出了一种适用于大尺度地图的全局一致的高效建图方法。我们提出的工作由自底向上的分层BA和自顶向下的位姿图优化组成,结合了两种方法的优点。通过分层设计,我们用比原始BA小得多的Hessian矩阵来解决多个BA问题;原创 2024-06-08 17:43:23 · 1299 阅读 · 0 评论 -
Cartographer学习笔记
Cartographer 是一个跨多个平台和传感器配置提供 2D 和 3D 实时同步定位和地图绘制 (SLAM) 的系统。原创 2024-06-06 12:39:39 · 650 阅读 · 1 评论 -
LIO-SAM源码解析(五):mapOptmization.cpp
这个函数主要就是进行帧到地图的匹配,通过点到面、点到线的距离距离最小作为优化目标。LOAM中雅阁比矩阵推导其实还是过于复杂了,可以使用进行误差扰动来计算雅阁比矩阵,姿态使用失准角(李代数)模型推导更为简单。原创 2024-05-21 12:56:38 · 2657 阅读 · 0 评论 -
GCLO:具备地面约束的适用于停车场AVP任务的lidar里程计
在具体的工程实践中,lidar在地下停车场容易沿垂直方向向上漂移,导致建图结果不佳。具体原因是当入射角较大时,激光雷达测量的深度可能会出现偏差。因此,当车辆在地面上移动时,从道路上观察到的点会稍微弯曲,LO 估计的轨迹会沿垂直方向漂移。因此为了消除 LiDAR 测量偏差并压缩可预测的位姿漂移,通常做法是需要针对不同的传感器调整比例因子,并且需要根据环境温度产生差异,所以为了提升鲁棒性,加入地面平面的考量减少无关项的影响是一个实用的选择。......转载 2023-01-21 21:15:37 · 597 阅读 · 0 评论 -
MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square论文阅读
随着自动驾驶与移动建图的快速发展,实际项目中对现成的激光SLAM建图方案的需求也越来越强烈,并且要求解决方案适用于各种不同规格的激光雷达与各种复杂场景。因此,我们提出了MULLS,一种高效,低漂移,多功能的3D激光SLAM系统。算法的前端使用双阈值地面分类与主成分分析,从每帧点云中提取粗略的特征点(地面,立面,柱,横梁等);然后使用本文提出的线性最小二乘最近邻迭代算法对当前帧与局部地图配准;在不同的特征类中使用点到点(点到面,点到线)的距离联合建立估计方程来估计运动状态,配准之后的特征点会更新到局部地图中。原创 2022-12-20 23:21:11 · 1004 阅读 · 0 评论 -
FAST-LIO论文阅读
本文提出一个开销较小且鲁棒的激光惯性里程计框架。使用迭代扩展卡尔曼滤波器来实现激光雷达特征点和IMU的紧耦合,可以在快速运动、有噪声或重复纹理等退化环境中鲁棒地定位。为了在测量数据量很大的情况下降低开销,提出了计算卡尔曼增益的新公式。该公式的计算开销依赖于状态量的维度而非测量量的维度。该方法已经在室内和室外环境中进行了测试,在所以有测试中该方法均能可靠运行。原创 2022-12-15 23:07:07 · 2872 阅读 · 1 评论 -
LIO-SAM源码解析(七):utility.h
这个意思就是我launch文件里面有这个"lio_sam/pointCloudTopic"(前面这个)的参数值的赋值,那么就赋值给pointCloudTopic(后面这个),后面的"/points_raw"就会忽略。那假如launch文件里面没有这个"lio_sam/pointCloudTopic"的定义,则就用"points_raw"。那么相关的参数就放在params.yaml文件中。原创 2022-12-03 13:21:09 · 1522 阅读 · 0 评论 -
LIO-SAM源码解析(六):featureExtraction.cpp
对每条线上大曲率进行排序,每条线分为6段,每段最多提取20个。大于阈值就是角点(默认0.1),并且标记该点周围其他点已经被提取了。小于阈值同理,当成平面点。不过平面点要经过一个降采样过程(角点不用,可能是平面点比较多)。角点以"lio_sam/feature/cloud_corner"发布,平面点以"lio_sam/feature/cloud_surface"发布,然后把二者合在一起,在lio_sam/deskew/cloud_info的基础上,填充cloud_corner和cloud_surface字段,原创 2022-12-03 13:18:04 · 772 阅读 · 1 评论 -
LIO-SAM源码解析(四):imuPreintegration.cpp
这个cpp文件主要有两个类,一个叫IMUPreintegration类,一个叫TransformFusion类。现在我们分开讲,先说IMUPreintegration类。原创 2022-12-03 12:07:13 · 2284 阅读 · 0 评论 -
LIO-SAM源码解析(二):代码结构
首先对于一个SLAM系统,后端优化是一个核心模块,有较早的卡尔曼滤波器、现在流行的图优化、因子图优化。LIO-SAM则采用因子图优化方法,包含四种因子。LIO-SAM因子:IMU预积分因子,激光里程计因子,GPS因子,闭环因子。下图是LIO-SAM的因子图结构,变量节点是关键帧。相邻的关键帧之间,通过IMU数据计算预积分,获得位姿变换,构建IMU预积分因子。每个关键帧还有对应的GPS数据参与校正。如果有闭环出现,闭环帧之间可以构建约束。关键帧之间有若干普通帧,这些帧不参与图优化,但是会执行scan-原创 2022-12-03 10:04:51 · 3519 阅读 · 1 评论 -
基于先验激光雷达地图的2D-3D线特征单目定位
对于视觉导航任务,在已知地图在进行轻量化的相机定位是一个有意义的工作。目前视觉里程计(包括VO和VIO)能够较好地完成位姿估计任务,但是无法避免地会发生误差累积,并且在发生回环检测的时候产生位姿跳变。为了解决以上问题,本文提出了一个有效的基于3D-2D线特征联系的单目定位系统,其基于激光雷达所制造出的点云地图。为了解决雷达点云与图像之间的关联,本文在3D雷达点云地图中提取3D线特征,对应在图像中提取2D的线特征,在基于VIO的位姿预测中,可以有效地建立两者之间的初步对应关系,然后通过迭代优化计算来剔除匹原创 2022-10-29 11:13:42 · 1072 阅读 · 0 评论 -
FAST-LIO2:快速且直接的激光雷达与惯导里程计
本文介绍了FAST-LIO2:一种快速、稳健且通用的激光惯性里程计框架。FAST-LIO2建立在高效的紧耦合迭代卡尔曼滤波器的基础上,有两个关键的创新之处可以实现快速、稳健和准确的激光雷达导航(和建图)。第一个是不提取特征直接将原始点配准到地图(并随后更新地图,即建图),而这使得环境中的细微特征能够被使用,从而提高匹配准确性,且取消提取特征模块能够适应有着不同扫描模式的新兴雷达;第二个新颖之处是通过增量k-d树(ikd-tree)数据结构维护地图。ikd-tree支持增量更新(即点插入删除)和动态平衡。与现原创 2022-07-21 17:19:39 · 12397 阅读 · 0 评论 -
PLC-LiSLAM线-面-圆柱体-激光SLAM
平面、线段与圆柱体广泛存在于人造环境中。在本文中,我们提出了一个使用这些landmark的激光雷达SLAM系统。我们的算法有三个部分:局部建图、全局建图与定位。局部与全局建图模块通过最小化三维点到模型的残差来联合优化这些landmark的参数与位姿,这个过程我们称之为PLCA(plane-line-cylinder adjustment)。可以证明,通过一些预处理,PLCA问题与这些landmark的三维点的数量无关,因此可以使得位姿优化更加高效。定位部分通过将局部地图里的面、线与圆柱体,同全局地图里的面、原创 2022-07-18 14:13:42 · 844 阅读 · 0 评论 -
LIO-SAM源码解析(三):imageProjection.cpp
利用当前激光帧起止时刻间的imu数据计算旋转增量,IMU里程计数据(来自ImuPreintegration)计算平移增量,进而对该帧激光每一时刻的激光点进行运动畸变校正(利用相对于激光帧起始时刻的位姿增量,变换当前激光点到起始时刻激光点的坐标系下,实现校正);同时用IMU数据的姿态角(RPY,roll、pitch、yaw)、IMU里程计数据的的位姿,对当前帧激光位姿进行粗略初始化。原创 2022-07-18 13:27:54 · 1989 阅读 · 6 评论 -
LIO-SAM源码解析(一):论文阅读
我们提出了一个通过smoothing and mapping实现的紧耦合激光惯性里程计框架,LIO-SAM,能够取得高精度、实时的移动机器人的轨迹估计和地图构建。LIO-SAM基于因子图构建,把多个相对测量数据或者绝对测量数据,包括回环检测,以因子的形式加入到系统中进行联合优化。通过IMU预积分获得的运动估计可以用于点云运动畸变的修正和作为激光里程计优化的初值。反之,基于获得的激光里程计可以估计IMU的零偏。为了保证实时性能,当位姿估计时,我们边缘化老的激光帧;而不是将雷达点云与全局地图进行匹配。Sc...原创 2022-07-18 13:06:04 · 4052 阅读 · 0 评论 -
π-LSAM:基于平面的激光雷达平滑和建图
本文提出了一种基于平面的实时稠密室内激光雷达SLAM系统,π-LSAM。目前使用较为广泛的激光雷达里程计和建图框架(LOAM)不含 Bundle Adjustment(BA),故而只能生成低保真的追踪位姿。本文力图在室内环境下克服这些缺陷。具体而言,我们将平面作为地标,引入平面调整(Plane Adjustment, PA)作为我们的后端,联合优化平面和关键帧的位姿。我们提出了π系数,以显著降低PA的计算复杂度。此外,我们引入了一种有效的基于RANSAC框架的平面回环检测算法。我们的算法在前端可以实现实时的原创 2022-07-17 13:41:29 · 814 阅读 · 0 评论 -
点云匹配方法NDT(正态分布变换)
在点云匹配中,ICP基于距离直接最优化变换矩阵的参数,由于是欠定方程且旋转矩阵的约束,使得结果很难优化,为此在新的维度优化变换矩阵的参数,被很好的提出:先将参考点云(目标点云)转换为多维变量的正态分布,匹配的点云如果采用某组变换参数后,使得新的点云和目标点云的正态分布参数匹配很好,那么变换点在参考系中的概率密度将会很大。因此,可以考虑用优化的方法求出使得概率密度之和最大的变换参数,此时两幅激光点云数据将匹配的最好。原创 2022-05-07 21:35:58 · 6216 阅读 · 0 评论 -
激光SLAM框架LeGO-LOAM
LeGO-LOAM全称为:Lightweight and Groud-Optimized Lidar Odometry and Mapping on Variable Terrain,从标题可以看出 LeGO-LOAM 为应对可变地面进行了地面优化,同时保证了轻量级。LeGO-LOAM是专门为地面车辆设计的SLAM算法,要求在安装的时候Lidar能以水平方式安装在车辆上;如果是倾斜安装的话,也要进行位姿转换到车辆上。而LOAM对Lidar的安装方式没有要求,即使手持都没有关系。作者的实验平台是一个移原创 2020-12-18 15:40:04 · 2315 阅读 · 1 评论