一文彻底搞懂大模型 - 基于人类反馈的强化学习(RLHF)

RLHF

随着大型语言模型(LLM)的快速发展, 如何使这些模型更好地理解和满足人类的需求成为了一个关键问题 。传统的训练方法往往依赖于 大规模的语料库和基于规则的损失函数 ,但这在处理复杂、主观和依赖上下文的任务时存在局限性。因此, 基于人类反馈的强化学习(Reinforcement Learning from Human Feedback,RLHF) 应运而生,为模型的训练提供了一种新的思路。

RLHF

一、RLHF的框架

什么是RLHF? 基于人类反馈的强化学习(Reinforcement Learning from Human Feedback,RLHF), RLHF是一种将人类反馈与强化学习相结合的方法,旨在通过引入人类偏好来优化模型的行为和输出。

在RLHF中,人类的偏好被用作奖励信号,以指导模型的训练过程,从而增强模型对人类意图的理解和满足程度。这种方法使得模型能够更自然地与人类进行交互,并生成更符合人类期望的输出

RLHF

RLHF的框架是什么? 基于人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)框架是一个复杂但高效的系统,包括强化学习算法、行动、环境、观察和奖励机制

1. 强化学习算法(RL Algorithm)

在RLHF框架中,常用的强化学习算法之一是近端策略优化(Proximal Policy Optimization, PPO)。PPO是一种用于训练代理的“on-policy”算法,它直接学习和更新当前策略,而不是从过去的经验中学习

2. 行动(Action)

在RLHF框架中,行动指的是言模型根据给定的提示(prompt)生成的输出文。这些输出文本是模型在尝试完成特定任务或响应特定指令时产生的。行动空间(Action Space)是词表所有token(可以简单理解为词语)在所有输出位置的排列组合。

3. 环境(Environment)

在RLHF中,环境是代理(即我们的语言模型)与之交互的外部世界,它提供了代理可以观察的状态、执行的动作以及根据这些动作给予的奖励。

  • 状态空间(State Space):这是环境可能呈现给代理的所有可能状态的集合。在RLHF中,状态通常对应于输入给模型的提示(prompt)或上下文信息。

  • 动作空间(Action Space):这是代理可以执行的所有可能动作的集合。在RLHF中,动作对应于模型生成的输出文本,即模型根据输入提示生成的响应。

  • 奖励函数(Reward Function):这是一个根据代理在环境中的行为(即生成的输出)来分配奖励的函数。在RLHF中,奖励函数通常不是直接给出的,而是通过训练一个奖励模型来预测的,该奖励模型能够基于人类反馈来评估不同输出的质量

4. 观察(Observation)

在RLHF框架中,观察指的是模型在生成输出文本时所接受到的输入提示(prompt)。这些提示是模型尝试完成任务的依据,也是模型进行决策和行动的基础。观察空间(Observation Space)是可能输入的token序列,即Prompt。

5. 奖励机制(Reward)

奖励机制是RLHF框架中的核心组成部分之一。它基于奖励模型对人类偏好的预测来给予模型奖励或惩罚。 它需要使用大量的人类反馈数据来进行训练,以确保能够准确地预测人类对不同输出的偏好。这些数据通常通过让标注人员对模型生成的输出进行排序、打分或提供其他形式的反馈来收集

二、RLHF实战:InstructGPT训练的3个阶段

如何使用RLHF进行InstructGPT模型训练?三个阶段共同构成了InstructGPT的训练过程, 通过收集描述性数据和比较性数据,并分别训练监督学习模型和奖励模型,最后利用PPO强化学习算法对奖励模型进行优化,从而训练出能够生成高质量、符合人类偏好输出的InstructGPT模型(ChatGPT的前身)。

第一步:收集描述性数据,并训练一个监督学习模型

  1. 从prompt数据集中采样出一部分数据。

  2. 标注员根据要求为采样的prompt编写答案,形成demonstration data。

  3. 利用这些标注好的数据来微调GPT-3模型,训练出一个监督学习模型。

关键术语:

  • Supervised Fine-Tuning(SFT): 有监督微调,即使用描述性数据来微调GPT-3模型。

  • Demonstration Data: 描述性数据,由标注员为prompt编写的答案

第二步:收集比较性数据,并训练一个奖励模型

  1. 从prompt数据库中取样,并得到数个模型的答案。

  2. 标注员为模型的多个输出进行打分或排序,这些输出是基于同一prompt生成的。

  3. 利用这些打分或排序数据来训练一个奖励模型(Reward Modeling,RM),该模型能够预测人类对不同输出的偏好分数。

关键术语:

  • Reward Modeling(RM): 奖励模型,用于预测人类对不同输出的偏好分数。

  • Comparison Data: 比较性数据,由标注员对模型输出的打分或排序构成

第三步:用PPO强化学习算法对奖励模型进行优化

  1. 从prompt数据库中另外取样。

  2. 由监督学习初始化PPO模型。

  3. 模型给出答案。

  4. 奖励模型对回答打分。

  5. 获得的分数通过PPO算法优化模型。

关键术语:

  • Proximal Policy Optimization(PPO): 近端策略优化算法,一种用于强化学习的策略优化方法。

  • Reinforcement Learning from Human Feedback(RLHF): 基于人类反馈的强化学习,是InstructGPT训练过程中的核心方法

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

GPT系列模型从GPT-1到ChatGPT的演进过程中,在架构和训练方法上经历了几个关键的改进和发展。首先,从架构上看,GPT-1模型采用了基于Transformer的Decoder-only架构,这是由于解码器在处理语言生成任务时的天然优势。GPT-1通过预训练和微调两个阶段来完成训练,预训练阶段主要利用无监督学习的方式从大量文本数据中学习语言模型,而微调阶段则针对特定任务进一步优化模型性能。 参考资源链接:[GPT系列演进:从GPT-1到ChatGPT的里程碑式突破](https://wenku.csdn.net/doc/v7in5j8y1u?spm=1055.2569.3001.10343) GPT-2在架构上保持了与GPT-1相同的设计,但是它通过zero-shot学习方法增强了模型的通用性,使得模型能够处理更多种类的任务而无需特定任务的微调。GPT-3在此基础上更进一步,引入了few-shot学习,这是指模型能够在见到很少量的训练样本后迅速适应新任务。GPT-3的模型参数量达到了惊人的1750亿,这一规模的模型为理解复杂语言模式和生成高质量文本提供了强大支持。 而到了ChatGPT,模型的发展重点在于更好地理解和执行用户的指令。ChatGPT基于GPT-3的架构,通过引入强化学习的human feedback (RLHF)方法,让模型在与人类交互中通过反馈进行迭代改进,从而提升模型的对齐度和表现力。这种反馈机制对于模型的智能对话能力提升至关重要,使得模型能够更加自然和流畅地进行对话。 在训练方法方面,GPT系列模型从最初的无监督预训练,到zero-shot和few-shot学习,再到RLHF方法的使用,体现了模型在理解和生成语言方面的不断进步。这些方法的演进不仅提高了模型的灵活性和适用范围,也促进了模型对人类语言的理解和回应能力。 为了深入了解这些演进背后的原理和实践,推荐阅读《GPT系列演进:从GPT-1到ChatGPT的里程碑式突破》一文。本文不仅详细分析了各个模型的架构和训练方法的变化,还提供了每个版本技术突破的深度解读,是研究GPT系列演进不可或缺的参考资料。 参考资源链接:[GPT系列演进:从GPT-1到ChatGPT的里程碑式突破](https://wenku.csdn.net/doc/v7in5j8y1u?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值