终于弄懂了!人工智能、深度学习、大模型的概念及联系

一、人工智能(AI)

人工智能是指通过模拟、延伸人类智能的机制,使机器能够执行需要智力的任务。这包括理解语言、学习、推理、问题解决等能力。人工智能系统通过算法和模型从大量数据中学习,并能够做出智能决策。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

人工智能的核心在于算法和模型,这些算法和模型能够处理、分析和解释数据,以模拟人类的智能行为。通过不断的学习和优化,人工智能系统能够逐渐提升其性能,以更好地完成各种任务。

二、机器学习(ML)

概念:

机器学习是人工智能的一个重要分支,其核心思想是让计算机系统从数据中学习并提高性能,而无需明确地编程。机器学习使机器能够通过数据和经验,自动地发现模式、进行预测和做出决策。

原理:

机器学习通过构建模型来实现数据的自动学习和分析。模型通过训练数据集进行训练,以学习数据中的模式和特征。在训练过程中,模型会不断调整其参数,以优化其性能。最终,训练好的模型可以用于对新的数据进行预测或分类。经典的机器学习模型如 线性回归模型,可以用于股票、房价预测。

机器学习可以分为监督学习、无监督学习和强化学习三种主要类型。监督学习通过已标记的数据进行训练,无监督学习则是从无标签的数据中自动发现模式和结构,而强化学习则是通过机器与环境的互动来学习,通过奖励和惩罚来指导决策过程。

三、深度学习(DL)

概念:

深度学习是机器学习的一种特殊形式,它模拟人脑神经网络的结构和功能。通过构建深层次的神经网络,深度学习能够处理大规模的数据和复杂的任务,如图像识别、语音识别等。

原理:

深度学习的核心是神经网络,它由大量的神经元和连接这些神经元的权重组成。神经网络通过前向传播和反向传播的方式学习数据的特征。在前向传播过程中,输入数据通过神经网络进行传播,并产生输出结果。在反向传播过程中,通过计算预测值与实际值之间的误差,并更新神经网络的权重和偏置,以优化模型的性能。

四、自然语言处理(NLP)

概念:

自然语言处理是人工智能的一个分支,它旨在让计算机理解、生成和处理人类语言。自然语言处理的核心任务包括文本分类、情感分析、命名实体识别、语义角色标注、语义解析、语言翻译、语音识别、语音合成等。

原理:

自然语言处理依赖于各种算法和模型,如词汇嵌入、循环神经网络(RNN)、长短期记忆网络(LSTM)等。这些算法和模型能够将自然语言文本转换为计算机可以理解和处理的形式,从而实现各种自然语言处理任务。

五、计算机视觉(CV)

概念:

计算机视觉是一种利用计算机和数学算法来模拟人类视觉系统对图像和视频进行识别、理解、分析和处理的技术。它主要包括图像处理、模式识别、计算机图形学等多个领域。

原理:

计算机视觉的核心原理包括图像处理、特征提取和机器学习。首先,对图像进行预处理,如增强、去噪、滤波等。然后,自动提取图像中的特征,如边缘、角点、纹理等。最后,通过机器学习算法,如支持向量机、卷积神经网络等,对图像进行分类、识别和理解。

六、AI大模型

大模型是人工智能领域中的一个重要概念,特指那些参数规模庞大、网络结构复杂的机器学习模型 如GPT。这些模型通常需要大量的计算资源和数据来进行训练和推理,但它们也因此在处理复杂任务时展现出了更高的准确性和泛化能力。大模型的出现,是深度学习技术发展到一定阶段的产物,它们能够捕捉并学习数据中的深层次特征和模式,从而在多个领域取得了显著的成果。

原理:

大模型主要基于深度学习技术,通过构建庞大的神经网络来实现对数据的自动学习和处理。这些神经网络由大量的神经元和连接这些神经元的权重组成,通过不断地调整权重来优化模型的性能。在训练过程中,大模型会利用大量的标注数据来学习数据的特征和规律,并通过反向传播算法来更新权重,以减少预测值与实际值之间的误差。

从原理上讲,大模型通过在大量数据上建立共现词概率模型来生成文本(说得精简点他的原理就是基于 “数据共识”来预测)。因此“下一个词是什么”与“它在真实世界中的语义含义或真实性”无关,而是与训练数据集中所有单词及其出现位置的统计概率最有可能的情况有关。

例如,“草是绿色的”这一表述之所以被认为是真实的,是因为在真实世界中草是绿色的。大模型之所以告诉用户草是绿色的,是因为“草是”这个词最常与“绿色”这个词一起出现,这并不意味着模型真正理解草坪的真实颜色。

七、人工智能与机器学习等的关系

人工智能与机器学习: 机器学习是人工智能的核心技术之一,是实现人工智能的重要手段。通过机器学习,人工智能系统能够自动从数据中学习并改进算法模型,从而完成各种复杂的任务。

机器学习与深度学习:深度学习是机器学习的一种特殊形式,它通过构建深层次的神经网络来模拟人脑神经网络的结构和功能。深度学习在处理大规模数据和复杂任务方面表现出色,是机器学习领域的重要研究方向。

自然语言处理与计算机视觉: 自然语言处理和计算机视觉都是人工智能的重要应用领域。自然语言处理关注于文本和语音的处理和理解,而计算机视觉则关注于图像和视频的处理和理解。这两个领域相互独立但又相互关联,共同构成了人工智能的多元应用场景。

大模型与人工智能的关系: 大模型是人工智能领域中的一个重要技术分支,作为深度学习技术的一种复杂形态,通过构建规模庞大的神经网络来处理复杂任务,为人工智能的发展提供了新的思路和方法。具体来说,大模型为人工智能提供了强大的技术支撑,使得人工智能系统能够处理更加复杂和多样化的任务。例如,在自然语言处理领域,大模型可以实现更加准确和流畅的语言理解和生成;在计算机视觉领域,大模型可以实现更加精细的图像识别和分类。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值