大模型学习路线与建议

博客围绕深度学习、智能对话系统和大模型展开。涵盖深度学习经典模型、优化策略、GPU应用等基础内容,解析多种智能对话系统架构。详细介绍GPT、LLaMA等大模型核心原理,阐述大模型微调技术,还包含大模型训练环境搭建、数据收集、代码开发等实战项目。


image-20231016105231937

image-20231016105529617

第一章 深度学习基础

深度学习基础
深度学习经典模型解析
深度学习模型优化策略解析
深度学习GPU原理与应用方法
深度学习GPU并行训练策略解析
深度学习模型多GPU训练实战

第二章 智能对话系统基础

智能对话系统综述
多轮对话系统架构解析
QA系统架构解析
知识图谱系统架构解析
KBQA系统架构解析
生成式对话系统架构解析
智能对话系统发展展望
知识图谱系统实战

第三章 大模型基础

大模型技术概述
GPT 系列模型核心原理详解(GPT1/GPT2/GPT3/GPT4/InstructGPT)
LLaMA 系列模型核心原理详解(LLaMA/Alpaca/Vicuna/BaiChuan/LLaMA2/BaiChuan2)
LLaMA 系列模型源码详解
BLOOM 系列模型核心原理详解(BLOOM/BLOOMZ)
ChatGLM 系列模型核心原理详(ChatGLM/ChatGLM2)
Langchain 框架核心原理详解
Langchain-LLM部署应用实战

第四章 大模型应用实践

大模型微调概述
大模型微调中的核心要素
大模型微调中的数据收集与评估
大模型微调中ChatGPT的使用
大模型Tuning技术详解(Prompt-Tuning/Instruction-Tuning/P-Tuning)
大模型PEFT技术详解(Adapter/LoRA)
大模型全参数微调技术详解(DeepSpeed)
大模型RLHF技术详解(PPO/DeepSpeed-Chat)
基于常规NLP任务的大模型微调实战

第五章 大模型实战项目

大模型训练环境搭建
大模型数据收集与 instruction 设计
通用大模型微调代码开发(支持多模型/多框架)
Baichuan-13B多GPU LoRA微调实现
Baichuan-13B多GPU 全参数微调实现
大模型性能评估体系搭建
大模型部署与服务接口开发
大模型界面化调用系统开发

image-20231016105242664

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秒懂AI+

觉得有用,要个免费的三连可有?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值