AlphaFold2探讨(十)

2021SC@SDUSC


今天看了很多关于关于AlphaFold2的文章,就来简单写写AlphaFold2带来的巨大影响


一、计算生物学的新挑战

  新算法将用于预测任何已测序生物的结构化蛋白质组。此类预测可能有助于特定科学项目的设计,但它们也将加速药物发现并促进生物技术应用。大规模预测可能还会导致一种新型的比较结构蛋白质组学,据推测,这将导致新的发现。然而,这些发展要求计算生物学家与实验界保持密切联系。

  在不久的将来,应该探索机器学习来预测蛋白质-核酸复合物的结构,这是 AlphaFold2 和 RoseTTAFold 的一个显着盲点。PDB 已经包含近 10,000 个蛋白质-核酸复合物条目,这些条目应该用于训练新算法。虽然预测蛋白质-DNA 复合物可能是可行的,但实验解析的蛋白质-RNA 复合物结构的数量仍然很少,因此训练集很小,这可能会影响此时的成功。

  还应开发新的机器学习工具来分析和预测蛋白质的构象变化,并解决多态组件和蛋白质纤维 的结构。机器学习方法还应该能够更好地预测蛋白质功能并促进蛋白质工程和设计。最后,估计多达一半的人类蛋白质组编码本质上无序的区域,这些区域通常参与多价相互作用以在细胞 中形成瞬时隔室。目前关于此类蛋白质区域的结构信息很少,但一旦有更多训练数据可用,机器学习工具可能会帮助我们更好地表征此类系统。

二、结构生物学将如何改变

  新算法将改变我们研究结构生物学的方式。首先,它们将通过冷冻电子显微镜 (cryo-EM) 促进大型组件的结构解决方案。这种方法通常需要单个蛋白质或其域的详细结构作为起点。预计,如果单个结构不可用,它们现在可以简单地作为预测模型下载并适合冷冻电镜密度。然后可以使用蛋白质交联和质谱来确认获得的拟合。

预测的结构也可用作搜索模型,通过分子置换解决 X 射线晶体结构,从而在许多情况下使实验定相过时。使用 NMR 的研究人员也可能受益于预测算法。NMR 对域结构的耗时从头解决方案可能会被快速预测所取代,从而可以更容易地利用 NMR 在研究蛋白质折叠和动力学以及配体和核酸的结合方面的独特优势。

新的预测算法还应该改进自动化模型构建。这不会改变结构生物学的一般方法,它总是将模型构建与实验观察相结合。最著名的例子可能是 DNA 双螺旋,它最初被建模以适应来自 X 射线纤维衍射和生物化学的实验观察。直到今天,结构模型都是用来解释实验数据的,但很快机器学习方法可能会与经典的细化工具相结合,在很大程度上实现模型构建的自动化,从而造福于社区。

三、结构生物学的未来

  结构生物学的一个长期目标仍然是在自然环境中可视化分子结构,这通常被称为细胞内或原位结构测定。事实上,最近在低温电子断层扫描、数据处理以及化学交联和质谱方面的进展证明了这种方法的可行性。然而,目前,细胞内结构生物学仅限于某些类型的简单细胞、细胞的部分或异常大而稳定的分子复合物。

细胞内结构生物学将受益于机器学习算法的进一步发展,这将使我们能够可靠地预测蛋白质复合物的结构,然后将其用作模板来挖掘断层扫描数据。然而,对如此大的复合物的实验研究揭示了它们的瞬时性质和可塑性,表明它们的完整性通常取决于核酸和小分子辅助因子,并发现蛋白质 - 蛋白质界面的尺寸通常非常小。因此,在可预见的未来,准确预测蛋白质复合物可能仍然是一项艰巨的挑战,并将依赖于改进的平台来整合来自各种来源的信息。

因此,它可能需要中间步骤来实现从当前最先进的集成结构生物学到未来细胞内结构测定的过渡。在接下来的几年里,结构生物学家可能会尝试解析大型内源性组件并可视化孤立的细胞区室。这样的研究肯定会受益于荧光标记和高分辨率光学显微镜17的蛋白质定位。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值