雅可比(Jacobian)矩阵简介

雅可比矩阵是多元微积分中的一个重要概念,用于描述一个多变量函数在某一点的局部线性变化情况。它包含了函数各偏导数的信息。在优化、控制系统、数值计算等领域有广泛应用。例如,在机器学习中,雅可比矩阵用于理解模型参数的敏感性和梯度下降等优化算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

雅可比(Jacobian)矩阵定义

在这里插入图片描述

例子

在这里插入图片描述

雅可比(Jacobian)矩阵意义

在这里插入图片描述在这里插入图片描述在这里插入图片描述

### 如何在 MATLAB 中计算可比矩阵 #### 使用内置 `jacobian` 函数 MATLAB 提供了一个方便的内置函数来计算给定多变量函数关于指定变量集的可比矩阵。对于符号表达式的操作,可以利用 Symbolic Math Toolbox 来实现这一目的。 ```matlab syms x y z % 定义符号变量 f = [z * exp(x^y); x; z; y]; % 定义一个多变量向量函数 J = jacobian(f, [x, y, z]); % 计算该函数相对于[x,y,z]的可比矩阵 disp(J); ``` 上述代码展示了如何定义一组符号变量以及一个依赖这些变量的矢量值函数,并通过调用 `jacobian()` 方法获取对应的可比矩阵[^3]。 #### 手动编写可比矩阵函数 当需要更灵活的功能或是特定应用场合下的优化时,也可以考虑手动构建可比矩阵计算过程。这通常涉及到对目标方程组逐项求导数并按照一定顺序排列形成最终的结果矩阵。 ```matlab function J = custom_jacobi(F, vars) n = length(vars); m = length(F); J = zeros(m,n,'sym'); for i=1:m for j=1:n J(i,j) = diff(F(i),vars(j)); end end end ``` 此自定义函数接受两个参数:一个是表示系统的列向量 F ,另一个是由独立变量组成的列表 vars 。它返回的是由偏导数组成的新矩阵 J 【^3】。 #### 工业机器人中的可比矩阵特殊处理 值得注意的是,在某些应用场景比如工业机器人的运动分析里,所获得的可比矩阵可能代表不同的物理意义。例如微分变换法所得出的速度向量是以末端执行器(即工具坐标系)为参照物描述的【^2】。因此,在实际编程过程中应当留意具体问题背景所带来的差异性影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值