1. 法拉第定律
根据法拉第定律,一个随时间改变的磁场可以产生电动势,并在闭合回路中引发电流
引发电动势的不一定是磁场本身的变化,也可能是导体在磁场内运动
电动势与磁场变化的关系如下:
e
m
f
=
−
d
ϕ
d
t
(
V
)
emf=-\frac{d\phi}{dt}(V)
emf=−dtdϕ(V)
可以看到,感应电动势emf的单位是V,是电压的单位
emf的符号与
d
ϕ
d
t
\frac{d\phi}{dt}
dtdϕ相反,这可以通过楞次定律解释,一个电路的感应电流总会试图阻止磁场的变化,表现在电流产生磁场的磁通量与变化磁场的磁通量互相抵消,从而使emf减小
导体内的电场强度与电动势关系如下
e
m
f
=
∮
E
⃗
⋅
d
l
⃗
emf=\oint \vec{E}\cdot\vec{dl}
emf=∮E⋅dl
而导体内的磁通量为:
ϕ
=
∬
S
B
⃗
⋅
d
s
⃗
\phi=\iint_S\vec{B}\cdot\vec{ds}
ϕ=∬SB⋅ds
因此,我们可以得出法拉第定律的另一种表达形式为:
∮
E
⃗
⋅
d
l
⃗
=
−
d
d
t
∬
S
B
⃗
⋅
d
s
⃗
=
−
∬
S
∂
B
⃗
∂
t
c
⋅
d
s
⃗
\oint \vec{E}\cdot\vec{dl}=-\frac{d}{dt}\iint_S\vec{B}\cdot\vec{ds}=-\iint_S\frac{\partial\vec{B}}{\partial t}c\cdot\vec{ds}
∮E⋅dl=−dtd∬SB⋅ds=−∬S∂t∂Bc⋅ds
其中平面方向向量
d
s
⃗
\vec{ds}
ds由右手定则判断方向
通过对上面的式子应用斯托克斯定理,我们可以得到:
∇
×
E
⃗
=
−
∂
B
⃗
∂
t
\nabla\times\vec{E}=-\frac{\partial\vec{B}}{\partial t}
∇×E=−∂t∂B
这就将电场强度与磁场强度联系在了一起
对于螺线管来说,每一圈螺线都会产生一个感应电动势,一个N圈的螺线管的总感应电动势为:
e
m
f
=
−
N
d
ϕ
d
t
emf=-N\frac{d\phi}{dt}
emf=−Ndtdϕ
1.1 时变磁场中的移动电路
磁场中移动的导体产生的电动势为:
e
m
f
=
∮
(
v
×
B
)
⋅
d
L
emf=\oint(v\times B)\cdot dL
emf=∮(v×B)⋅dL
如果这个导体是一根长度为d的杆,那么:
e
m
f
=
∮
(
v
×
B
)
⋅
d
L
emf=\oint(v\times B)\cdot dL
emf=∮(v×B)⋅dL
现在,如果这个移动电路所在的电磁场也是变化的呢?
我们先回顾一下洛伦兹力,如果一个电荷q在一个同时含有电场E和磁场B的区域中运动,它受到的力为:
F
=
q
(
E
+
v
×
B
)
=
q
E
′
F=q(E+v\times B)=qE'
F=q(E+v×B)=qE′
因此,当一个边界为C,面积为S的电路以速度v在这个区域中运动时,总的电动势为:
e
m
f
=
∮
C
E
′
⋅
d
l
=
−
∬
S
∂
B
∂
t
⋅
d
s
+
∮
C
(
v
×
B
)
⋅
d
l
(
V
)
emf=\oint_CE'\cdot dl=-\iint_S\frac{\partial B}{\partial t}\cdot ds+\oint_C(v\times B)\cdot dl\ (V)
emf=∮CE′⋅dl=−∬S∂t∂B⋅ds+∮C(v×B)⋅dl (V)
2. 位移电流
假设有一根杆,杆上电流为I,把这个杆插进一个圆环
S
1
S_1
S1中,那么这个圆环所包裹的电流
I
e
n
c
=
I
I_{enc}=I
Ienc=I,现在,假设的尽头有一个平行板电容器,一个曲面
S
2
S_2
S2套在杆的顶端,如下图所示
可以看到,杆直接穿过了深绿色的面
S
1
S_1
S1,而没有直接穿过浅绿色的面
S
2
S_2
S2,也就是说
S
2
S_2
S2内部的传导电流
I
e
n
c
=
0
I_{enc}=0
Ienc=0
然而事实上,电容器板之间虽然没有传导电流,却有位移电流(displacement current)
与传导电流不同的是,位移电流并不是依靠电荷的位移产生的,而是由电场变化引起的,电场变化则源自于平行板上电荷的增减,位移电流计算方式如下
I d = ϵ 0 d ϕ E d t I_d=\epsilon_0\frac{d\phi_E}{dt} Id=ϵ0dtdϕE
接着,通过计算我们可以知道,平行板上电荷的变化与杆上的电流直接相关,且
I
d
=
I
e
n
c
I_d=I_{enc}
Id=Ienc
即无论我们选择哪一个面,它所包裹的电流都是一样大的
于是我们可以得到更广义的法拉第定律
这里磁场不仅取决于传导电流,也取决于位移电流,即电通量的变化量
3. 电磁边界条件
时变场的边界条件与静态场是相同的,我们这里重温一下