期权无风险套利策略[3]—熊市垂直价差套利

熊市垂直价差

熊市垂直价差可以分为熊市看涨期权价差策略与熊市看跌期权价差策略。

其中,熊市看涨价差策略是指投资者买入较高行权价的认购期权、同时卖出数量相同的较低行权价的同月认购期权。

熊市看跌价差策略同理,将看涨期权换成看跌期权即可。

熊市价差策略示意图如下所示:
在这里插入图片描述
代码如下:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rc("font",family='DengXian')
matplotlib.rcParams['axes.unicode_minus']=False

K1=35
K2=30
ST=np.linspace(20,40,100)
long=np.maximum(K1-ST,0)-3
short=-np.maximum(K2-ST,0)+2
returns=long+short
plt.plot(long,'--r',label='看跌期权多头收益')
plt.plot(short,'--g',label='看跌期权空头收益')
plt.plot(returns,'-y',label='组合收益')
plt.xlabel('股票价格')
plt.ylabel('收益')
plt.title('看跌期权熊市差价组合')
plt.legend()
plt.grid(True)
plt.show()


认购期权价格随执行价格的上升呈现单调递减的趋势,而认沽期权的价格随着执行价格的上升呈现单调递增的趋势。

​​在这里插入图片描述

根据期权价格之间以及期权执行价格之间的关系,我们可以得到期权垂直价差的上下边界:

认购期权价差边界: 0 < 𝑐1 − 𝑐2 < (𝐾2 − 𝐾1)𝑒−𝑟𝑇
认沽期权价差边界: 0 < 𝑝2 − 𝑝1 < (𝐾2 − 𝐾1)𝑒−𝑟𝑇

​熊市看涨期权垂直价差套利

认购期权的垂直价差一旦超过了上边界(𝑐1 − 𝑐2 > (𝐾2 − 𝐾1)𝑒−𝑟𝑇), 投资者可通过构建 认购期权熊市价差组合进行套利,具体操作为卖出𝑐1的同时买入𝑐2。

​熊市看跌期权垂直价差套利

认沽期权垂直价差一旦低于下边界, (𝑝2 − 𝑝1 < 0),投资者可以通过买入𝑝2的同时卖出 𝑝1构建熊市价差组合。

具体案例

品种:沪铜
时间段:2022 年 6 月 28 日——2022 年 7 月 25 日
套利分析:2022 年 6 月 28 日开盘时,到期日为 2022 年 7 月 25 日(剩余 20 天)执行
价为 63000 的 CU2208P63000 看跌期权合约价格为 1650 元,而具有相同到期日、执行
价为 62000 的 CU2208P62000 看跌期权合约价格为 1796 元。此时执行价较高的看跌期
权价格反而比执行价较低的看跌期权价格更便宜,因而存在垂直套利空间。
具体操作:
2022 年 6 月 28 日开盘时

  1. 高执行价看跌期权多头
    做多一手 CU2208P63000 期权合约,支付 1650 元权利金。
  2. 低执行价看跌期权空头
    做空一手 CU2208P62000 期权合约,收入 1796 元权利金。
    实际收益:
    2022 年 7 月 25 日,CU2208P62000 和 CU2208P63000 期权合约均到期,标的期货合
    约 CU2208 当天结算价为 57290 元。
    根据当天 CU2208 结算价,买入的 CU2208P63000 看跌期权可以行权,获利 5710 元,
    卖出的 CU2208P62000 看跌期权被行权,亏损为 4710 元。
    最终,在 2022 年 7 月 25 日实现盈利(1796 − 1650 + 5710 − 4710) × 5 = 5730元 。

熊市看涨期权垂直价差套利市场回测

标的:豆粕主力期货合约及对应的期权合约
思路:根据市场数据进行熊市看涨期权垂直价差套利操作,信号发生之后持有5个交易日,计算持仓累计收益
合约乘数/交易单位:10
逐日计算套利组合后5日的最终收益,统计结果如下:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

熊市看跌期权垂直价差套利市场回测

标的:豆粕主力期货合约及对应的期权合约
思路:根据市场数据进行熊市看跌期权垂直价差套利操作,信号发生之后持有5个交易日,计算持仓累计收益
合约乘数/交易单位:10
逐日计算套利组合后5日的最终收益,统计结果如下:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoot和微服务架构的养老机构管理系统源码(毕业设计)基于SpringBoo
一个关于城市自行车出行的数据集,它记录了城市中自行车租赁服务的详细出行信息。该数据集通常包含多个字段,例如每次骑行的起始时间、结束时间、出发地点和到达地点的地理坐标(如经度和纬度)、骑行时长、自行车编号、用户类型(如注册会员或临时用户)等。这些丰富的数据维度为研究城市交通模式、居民出行习惯以及自行车租赁服务的运营效率提供了宝贵的信息。 数据集的规模可能因城市大小和数据收集时间跨度而异,但通常包含数万甚至数十万条记录。通过分析这些数据,可以发现城市中某些区域的骑行热度较高,例如商业区或旅游景点附近,这些地方可能是人们使用自行车的高频区域。同时,骑行时间的分布也能揭示出人们的出行规律,例如在工作日的早晚高峰时段,骑行量可能会显著增加,而在周末或节假日,骑行的目的地可能会更多地集中在休闲娱乐场所。 此外,该数据集还可以用于评估自行车租赁服务的运营状况,比如通过分析不同时间段的骑行时长和频率,了解自行车的使用效率和周转情况。对于城市规划者来说,这些数据有助于优化自行车道的布局,改善交通拥堵,促进绿色出行。而对于研究人员,它可以作为研究城市交通、环境影响以及社会行为模式的有力工具。总之,该数据集是一个极具价值的数据资源,能够为多个领域的研究和决策提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马尔可夫宽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值