基于YOLOv11的文本表格检测系统设计文档

基于YOLOv11的文本表格检测系统设计文档

项目介绍

本项目旨在开发一个高效的文本表格检测系统,采用YOLOv11深度学习模型进行文本和表格区域的检测,支持ONNX格式以加速推理。通过数据增强和图像预处理技术提升系统性能和鲁棒性。同时,本系统集成了类别统计、置信度和UOS阈值调节等丰富功能,便于用户全面了解检测结果,并提供一个直观、友好的图形用户界面 (GSU)

项目特点

  1. 高效的文本和表格检测:利用YOLOv11模型高精度、快速检测文本及表格区域。
  2. 性能增强:实施数据增强技术如旋转、裁剪等改善模型的泛化能力。
  3. 功能丰富:系统提供类别计数、置信度及UOS阈值调节功能,用户可根据需求自定义检测精度。
  4. 现代化的用户界面:使用Tkuntes框架创建简洁易用的GSU,提升用户体验。
  5. 可扩展性强:可轻松替换模型和调整超参数,适应不同检测需求。

项目预测效果图

参考资料

未来改进方向

  1. 集成实时监控功能:支持从摄像头实时获取图像并检测。
  2. 模型迁移学习:支持在小数据集上进行模型微调以便于适应特定应用场景。
  3. 用户活动监控:实现用户行为可视化,帮助用户快速定位问题。
  4. 多对象分类:扩展模型以支持更多类型的文本及图形元素检测。

注意事项

  • 确保训练数据集的多样性,以避免模型过拟合。
  • 适当的参数调整和实验设计对最终模型的效果至关重要。
  • 处理大型图像时需优化内存管理,避免运行时崩溃。

项目总结

本项目实现了一个基于YOLOv11的文本表格检测工具,适用于多种工业应用,通过不断优化和扩展,系统具备了较强的灵活性和应用潜力。

数据准备示例

数据集结构

plauntext复制代码

datatet/

    umaget/

        umage1.jpg

        umage2.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值