永磁同步电机驱动系统常用公式

永磁同步电机驱动系统常用公式

1电机机械功率计算公式

P = T ⋅ n 9550 P=\frac{T \cdot n} { 9550 } P=9550Tn
P:机械功率
T:电机转矩
n:电机转速

2电机电功率计算公式

在星形(Y)连接的三相系统中,线电压和相电压的关系为:
U L = 3 ⋅ U P U L :线电压 U P :相电压 U_L = \sqrt{3} \cdot U_P \\ U_{L} :线电压 \\ U_{P} :相电压 UL=3 UPUL:线电压UP:相电压

2.1有功功率

对于三相系统,总的有功功率是三个相
的功率的总和。
单相功率(相功率) P P 是: P P = U P ⋅ I P ⋅ c o s ϕ 对于星形( Y )连接的系统,总的有功功率 P 是: P = 3 ⋅ P P = 3 ⋅ ( U P ⋅ I P ⋅ cos ⁡ ϕ ) P = 3 ⋅ ( U P ⋅ I P ⋅ cos ⁡ ϕ ) = 3 ⋅ U L I L cos ⁡ ϕ cos ⁡ ϕ :功率因数 U L :线电压 U P :相电压 I L :线电流 I P :相电流 星形( Y )连接的系统: I P = I L 单相功率(相功率)P_P是: \\P _P=U_P ⋅ I _P ⋅ cosϕ \\对于星形(Y)连接的系统,总的有功功率 P是: \\P = 3 \cdot P_P = 3 \cdot (U_P \cdot I_P \cdot \cos\phi ) \\P=3 \cdot (U_P \cdot I_P \cdot \cos\phi ) = \sqrt{3} \cdot U_{L} I_{L} \cos\phi \\ \cos\phi:功率因数 \\U_{L} :线电压 \\U_{P} :相电压 \\I_{L} :线电流 \\I_{P} :相电流 \\星形(Y)连接的系统:I_{P}=I_{L} 单相功率(相功率)PP是:PP=UPIPcosϕ对于星形(Y)连接的系统,总的有功功率P是:P=3PP=3(UPIPcosϕ)P=3(UPIPcosϕ)=3 ULILcosϕcosϕ:功率因数UL:线电压UP:相电压IL:线电流IP:相电流星形(Y)连接的系统:IP=IL

2.2无功功率

Q = 3 ⋅ ( U P ⋅ I P ⋅ sin ⁡ ϕ ) = 3 ⋅ U L I L sin ⁡ ϕ \\Q=3 \cdot (U_P \cdot I_P \cdot \sin\phi ) = \sqrt{3} \cdot U_{L} I_{L} \sin\phi Q=3(UPIPsinϕ)=3 ULILsinϕ

2.3视在功率

S = 3 ⋅ ( U P ⋅ I P ) = 3 ⋅ U L I L \\S=3 \cdot (U_P \cdot I_P ) = \sqrt{3} \cdot U_{L} I_{L} S=3(UPIP)=3 ULIL

2.4三个功率的关系

S 2 = P 2 + Q 2 \\S^2=P^2+Q^2 S2=P2+Q2
有功功率(P)、无功功率(Q)和视在功率(S)之间的关系可以用功率三角形来表示。功率三角形是一种图形表示法,展示了这三种功率之间的直角三角形关系。
在功率三角形中:
有功功率 PP 是横边(基底)。
无功功率 QQ 是纵边(高度)。
视在功率 SS 是斜边(斜边)。
根据勾股定理,它们之间的关系可以表示为:
S 2 = P 2 + Q 2 S^2 = P^2 + Q^2 S2=P2+Q2

功率因数:
功率因数 cos ⁡ ϕ 是有功功率 P 与视在功率 S S 之比: cos ⁡ ϕ = P S \\功率因数 \cos\phi 是有功功率 P 与视在功率 SS之比: \\\cos\phi = \frac{P}{S} 功率因数cosϕ是有功功率P与视在功率SS之比:cosϕ=SP

待补充…

### 永磁同步电机通过旋转变压器测量的转速计算方法 #### 1. 旋转变压器工作原理 旋转变压器是一种用于检测旋转机械角位置和速度的设备。它由定子和转子组成,当转子相对于定子转动时,会改变互感系数从而影响输出电压。该装置能够提供高精度的位置反馈信号。 #### 2. 获取电气角度 为了从旋转变压器获取转速信息,首先要得到其输出代表的角度值θ_elec(t),这通常是经过解码电路处理后的数据流形式给出。此角度反映了转子相对于某一参考方向所处的具体方位[^1]。 #### 3. 将电气角度转换为机械角度 考虑到永磁同步电机内部结构特点——存在极对数p,实际物理意义上的每圈对应着多个周期性的电学行为变化;因此需要将上述获得的瞬态电气角度θ_elec(t)除以相应的极对数目p才能得出真实的机械角度θ_mech(t)=θ_elec(t)/p[^2]。 #### 4. 时间差分求取角速度 有了随时间变化的一系列离散化采样点构成的时间序列{t_i}以及对应的机械角度读数集合{\theta_{mech}(t_i)}之后,就可以利用相邻两点间差异近似表示瞬时速率: \[ \omega (t_n )=\frac{{\Delta \theta _{mech}}}{{\Delta t}}=\frac{{\theta _{mech}(t_{n})-\theta _{mech}(t_{n-1})}}{{t_{n}-t_{n-1}}} \] 其中ω(t_n)即为第n次采样时刻下的角速度估计值[^3]。 #### 5. 单位换算 最后一步是把单位从弧度/秒(rad/s)转变为常用的分钟转数(rpm): \[ N(\text {rpm })=\omega (\mathrm{rad}/s)\times\left(60 / 2\pi p\right) \] 这样就完成了整个过程:从原始硬件接口接收到的数据直至最终可理解的形式展示出来。 ```python import numpy as np def calculate_speed(theta_elec, time_stamps, pole_pairs): """ Calculate the speed of a PMSM using resolver measurements. Parameters: theta_elec : list or array-like Electrical angle readings from the resolver over time. time_stamps : list or array-like Corresponding timestamps for each electrical angle reading. pole_pairs : int Number of pole pairs in the motor. Returns: speeds_rpm : ndarray Array containing calculated speeds at given times in RPM units. """ # Convert to mechanical angles by dividing with number of poles mech_angles = np.array(theta_elec) / pole_pairs # Compute angular velocities via finite differences method omega_rad_per_s = np.diff(mech_angles) / np.diff(time_stamps) # Convert rad/s into rpm considering there are 'pole_pairs' per revolution speeds_rpm = omega_rad_per_s * (60/(2*np.pi*pole_pairs)) return speeds_rpm ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值