全景影像转立方体

一般的思路:

由全景平面坐标转到三维球面坐标再转到立方体(三维笛卡尔坐标)上,由于三维球面坐标是极坐标,当其映射到三维笛卡尔坐标系时会存在空洞。这里可以这么简单地得到理解:假设在极坐标系中角分辨率是一定的,那么随着坐标值的增大其角分辨率对应的距离越大,会导致六面体的像素缺失。另一种解释是,球的表面积小于其外切正方体的面积,所以如果直接将球坐标系上的点投影到立方体上,会存在立方体像素缺失的情况。

如何避免上述空洞问题呢?一个思路是将上述过程反变换:将立方体投影到三维球面坐标,再在全景平面找到对应的像素坐标。因此根据这一思路可以将全景平面照片生成六面体照片,即立方体的六个面。

首先需要定义两个坐标系:

建立一个三维单位球,半径为1,其是全景照片的极坐标表示,建立单位球的外切正方体,其边长为2.

三维笛卡尔坐标系(相机坐标系):
x轴正方向朝右,y轴正方向朝前,z轴正方向朝上(右手系)。
假设六面体对应六张影像,设其分辨率为h,像素坐标为(u,v),则其对应的图像坐标为(x,y):
{ x = 2 ∗ u h − 1 y = 2 ∗ v h − 1 \begin{cases} x=\frac{2*u}{h}-1\\ y=\frac{2*v}{h}-1 \end{cases} {x=h2u1y=h2v1

进一步得到(x,y)在三维笛卡尔坐标系中的坐标P(X,Y,Z):

在这里插入图片描述

进一步极坐标与笛卡尔坐标的关系为:
{ X = r . c o s θ . c o s α Y = r . c o s θ . s i n α Z = r . s i n θ \begin{cases} X=r.cos\theta.cos\alpha\\ Y=r.cos\theta.sin\alpha\\ Z=r.sin\theta \end{cases} X=r.cosθ.cosαY=r.cosθ.sinαZ=r.sinθ
θ , α \theta,\alpha θ,α为OP与xoy平面夹角,及OP在xoy平面投影与x轴夹角。 − 0.5 π < θ < 0.5 π , − π < α < π -0.5\pi<\theta<0.5\pi,-\pi<\alpha<\pi 0.5π<θ<0.5π,π<α<π,r=1.
可得:
{ θ = a r c s i n ( Z X ∗ X + Y ∗ Y + Z ∗ Z ) α = a r c t a n ( Y X ) \begin{cases} \theta=arcsin(\frac{Z}{\sqrt{X*X+Y*Y+Z*Z}}) \\ \alpha=arctan(\frac{Y}{X}) \end{cases} {θ=arcsin(XX+YY+ZZ Z)α=arctan(XY)
三维球坐标系与全景照片的关系如图所示(网图,符号与本文定义不符,忽略符合):
在这里插入图片描述

相当于把球先投影到圆柱侧面,再展开成平面,因此, θ \theta θ表示全景平面的y值, α \alpha α表示全景照片平面的x值。设全景照片分辨率m,n(m,n=高宽=1:2),其像素坐标为(u1,v1):
{ u 1 = α π ∗ n 2 + n 2 v 1 = − θ 0.5 π ∗ m 2 + m 2 \begin{cases} u1=\frac{\alpha}{\pi}*\frac{n}{2}+\frac{n}{2}\\ v1=\frac{-\theta}{0.5\pi}*\frac{m}{2}+\frac{m}{2} \end{cases} {u1=πα2n+2nv1=0.5πθ2m+2m
注意全景图像左上角对应 θ = 0.5 π , α = − π \theta=0.5\pi,\alpha=-\pi θ=0.5π,α=π所以这里的y方向与全景图像坐标系y是相反的,所以使用 − θ -\theta θ
通过上述过程就得到了从正方体像素平面坐标(u,v)->(X,Y,Z)-> ( θ , α ) (\theta,\alpha) (θ,α)->全景像素平面坐标(u1,v1),完成全景到6张正方体图像的转换。

代码实现:


#include <iostream>
#include<opencv2/opencv.hpp>
using namespace cv;
const double pi = 3.1415926;

void pano2cube(Mat &pano_img, int face_id)
{
	
	Mat cube = Mat(512, 512, CV_8UC3);
	for (size_t i = 0; i < cube.rows; i++)
	{
		for (size_t j = 0; j < cube.cols; ++j)
		{
			//get img coordinates
			auto img_x = 2.0 * double(i) / double(cube.cols) - 1.0;
			auto img_y = 2.0 * double(j) / double(cube.cols) - 1.0;
			//transform img coordinates to camera coordinates(Cartesian coordinates)
			double camera_x = 0.0;
			double camera_y = 0.0;
			double camera_z = 0.0;

			switch (face_id)
			{
			case 0:
			{
				camera_x = img_x;
				camera_y = -1.0 * img_y;
				camera_z = 1;
				break;

			}
			case 1:
			{
				camera_x = img_x;
				camera_y = -1.0 * img_y;
				camera_z = -1.0;
				break;

			}
			case 2:
			{
				camera_x = img_x;
				camera_y = 1.0;
				camera_z = -1.0 * img_y;
				break;

			}
			case 3:
			{
				camera_x = img_x;
				camera_y = -1.0;
				camera_z = -1.0 * img_y;
				break;

			}
			case 4:
			{
				camera_x = -1.0;
				camera_y = img_x;
				camera_z = -1.0 * img_y;
				break;

			}
			case 5:
			{
				camera_x = 1.0;
				camera_y = img_x;
				camera_z = -1.0 * img_y;
				break;

			}
			default:
				break;
			} 
			double xyz_dist = std::pow((camera_x * camera_x + camera_y * camera_y+camera_z*camera_z), 0.5);
			//pano polar coordinates
			double theta = std::asin(camera_z/xyz_dist);
			double alpha = std::atan2(camera_y, camera_x);//[-pi,pi]
			//pano pixel coordinates
			double u = alpha / pi * double(pano_img.cols) / 2.0 + double(pano_img.cols) / 2.0;
			double v = -1.0 * theta / (0.5 * pi) * double(pano_img.rows) / 2.0 + double(pano_img.rows) / 2.0;
			if (v>pano_img.rows ||u> pano_img.cols)
			{
				//std::cout << u << " " << v << std::endl;
				continue;
			}
			cube.at<cv::Vec3b>(j, i)[0] = pano_img.at<cv::Vec3b>(v, u)[0];
			cube.at<cv::Vec3b>(j, i)[1] = pano_img.at<cv::Vec3b>(v, u)[1];
			cube.at<cv::Vec3b>(j, i)[2] = pano_img.at<cv::Vec3b>(v, u)[2];


		}
	}

	cv::imwrite(std::to_string(face_id) + "cube.jpg", cube);
}
int main()
{
	auto pano = imread("pano.jpg");
	for (size_t i = 0; i < 6; i++)
	{
		pano2cube(pano, i);
	}
	std::cout << "Hello World!\n";
}


效果:
全景影像:
在这里插入图片描述

生成的六面体

在这里插入图片描述
参考:
1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值