Jaeger 4th Chapter 4 Field-Effect Transistors P156
这张图很重要,理解这张图基本弄懂给定VGS如何确定线性区和饱和区
饱和区(pinch-off 区域)中的数学模型
现在让我们找到在漏极被“pinch-off”(夹断)条件下,MOSFET漏极电流的表达式。此时,漏-源电压达到刚好使通道在漏端被夹断的值,该电压为:
v D S = v G S − V T N v_{DS} = v_{GS} - V_{TN} vDS=vGS−VTN
将此值代入公式 (4.13),可得出 n 通道 MOSFET 在饱和区的电流表达式:
i D = K n ′ 2 W L ( v G S − V T N ) 2 for v D S ≥ ( v G S − V T N ) ≥ 0 i_D = \frac{K_n'}{2} \frac{W}{L} (v_{GS} - V_{TN})^2 \quad \text{for } v_{DS} \geq (v_{GS} - V_{TN}) \geq 0 iD=2Kn′LW(vGS−VTN)2for vDS≥(vGS−VTN)≥0
这是经典的二次平方定律表达式,描述了 n 型 MOSFET 在饱和区(夹断状态)下的漏-源电流。电流取决于 v G S − V T N v_{GS} - V_{TN} vGS−VTN 的平方,但与漏-源电压 v D S v_{DS} vDS 无关。公式 (4.17) 在本文余下部分将被频繁使用,请记住它!
当晶体管饱和时,其漏-源电压的值被定义为:
v D S A T = v G S − V T N v_{DSAT} = v_{GS} - V_{TN} vDSAT=vGS−VTN
并且 v D S A T v_{DSAT} vDSAT 被称为 饱和电压 或 夹断电压(pinch-off voltage)。MOSFET 的公式 (4.17) 的物理意义可以类似于公式 (4.14) 来理解:
i D = ( C ox ′ ′ W v G S − V T N 2 ) ( μ n v G S − V T N L ) i_D = \left( C_{\text{ox}}'' W \frac{v_{GS} - V_{TN}}{2} \right) \left( \mu_n \frac{v_{GS} - V_{TN}}{L} \right) iD=(Cox′′W2vGS−VTN)(μnLvGS−VTN)
倒置通道区域的电压为 v G S − V T N v_{GS} - V_{TN} vGS−VTN,如图 4.9© 所示。因此,第一项表示反型层中平均电子电荷量的大小,第二项表示电子在电场中(电场强度等于 ( v G S − V T N ) / L (v_{GS} - V_{TN}) / L (vGS−VTN)/L)的速度大小。
具体例子
一个 NMOS 晶体管的输出特性示例( V T N = 1 V V_{TN} = 1 \, \text{V} VTN=1V, K n = 25 μ A / V 2 K_n = 25 \, \mu A/V^2 Kn=25μA/V2),如图 4.8 所示,其夹断点的轨迹由 v D S = v D S A T v_{DS} = v_{DSAT} vDS=vDSAT 确定。在夹断轨迹的左侧,晶体管工作在三极区;在夹断轨迹的右侧,晶体管工作在饱和区。对于 v G S ≤ V T N = 1 V v_{GS} \leq V_{TN} = 1 \, \text{V} vGS≤VTN=1V,晶体管处于截止状态,漏极电流为零。
随着栅极电压 v G S v_{GS} vGS 的增加,曲线会因公式 (4.17) 的平方关系扩展开来。
图 4.10 给出了栅源电压 v G S = 3 V v_{GS} = 3 \, \text{V} vGS=3V 时,三极区和饱和区方程的个别输出特性。三极区的表达式(公式 4.13)由图 4.10 中的倒置抛物线表示。需要注意,对于 v D S > v G S − V T N = 2 V v_{DS} > v_{GS} - V_{TN} = 2 \, \text{V} vDS>vGS−VTN=2V 的情况,该方程不再表示有效模型。
还需要注意,漏-源电压 v D S v_{DS} vDS 绝不能超过漏区与衬底之间 PN 结的雪崩击穿电压。