【模拟】MOS饱和区和线性区,vDSAT

Jaeger 4th Chapter 4 Field-Effect Transistors P156
这张图很重要,理解这张图基本弄懂给定VGS如何确定线性区和饱和区
在这里插入图片描述


饱和区(pinch-off 区域)中的数学模型

现在让我们找到在漏极被“pinch-off”(夹断)条件下,MOSFET漏极电流的表达式。此时,漏-源电压达到刚好使通道在漏端被夹断的值,该电压为:

v D S = v G S − V T N v_{DS} = v_{GS} - V_{TN} vDS=vGSVTN

将此值代入公式 (4.13),可得出 n 通道 MOSFET 在饱和区的电流表达式:

i D = K n ′ 2 W L ( v G S − V T N ) 2 for  v D S ≥ ( v G S − V T N ) ≥ 0 i_D = \frac{K_n'}{2} \frac{W}{L} (v_{GS} - V_{TN})^2 \quad \text{for } v_{DS} \geq (v_{GS} - V_{TN}) \geq 0 iD=2KnLW(vGSVTN)2for vDS(vGSVTN)0


这是经典的二次平方定律表达式,描述了 n 型 MOSFET 在饱和区(夹断状态)下的漏-源电流。电流取决于 v G S − V T N v_{GS} - V_{TN} vGSVTN 的平方,但与漏-源电压 v D S v_{DS} vDS 无关。公式 (4.17) 在本文余下部分将被频繁使用,请记住它!


当晶体管饱和时,其漏-源电压的值被定义为:

v D S A T = v G S − V T N v_{DSAT} = v_{GS} - V_{TN} vDSAT=vGSVTN

并且 v D S A T v_{DSAT} vDSAT 被称为 饱和电压夹断电压(pinch-off voltage)。MOSFET 的公式 (4.17) 的物理意义可以类似于公式 (4.14) 来理解:

i D = ( C ox ′ ′ W v G S − V T N 2 ) ( μ n v G S − V T N L ) i_D = \left( C_{\text{ox}}'' W \frac{v_{GS} - V_{TN}}{2} \right) \left( \mu_n \frac{v_{GS} - V_{TN}}{L} \right) iD=(Cox′′W2vGSVTN)(μnLvGSVTN)

倒置通道区域的电压为 v G S − V T N v_{GS} - V_{TN} vGSVTN,如图 4.9© 所示。因此,第一项表示反型层中平均电子电荷量的大小,第二项表示电子在电场中(电场强度等于 ( v G S − V T N ) / L (v_{GS} - V_{TN}) / L (vGSVTN)/L)的速度大小。


具体例子

一个 NMOS 晶体管的输出特性示例( V T N = 1   V V_{TN} = 1 \, \text{V} VTN=1V K n = 25   μ A / V 2 K_n = 25 \, \mu A/V^2 Kn=25μA/V2),如图 4.8 所示,其夹断点的轨迹由 v D S = v D S A T v_{DS} = v_{DSAT} vDS=vDSAT 确定。在夹断轨迹的左侧,晶体管工作在三极区;在夹断轨迹的右侧,晶体管工作在饱和区。对于 v G S ≤ V T N = 1   V v_{GS} \leq V_{TN} = 1 \, \text{V} vGSVTN=1V,晶体管处于截止状态,漏极电流为零。

随着栅极电压 v G S v_{GS} vGS 的增加,曲线会因公式 (4.17) 的平方关系扩展开来。


图 4.10 给出了栅源电压 v G S = 3   V v_{GS} = 3 \, \text{V} vGS=3V 时,三极区和饱和区方程的个别输出特性。三极区的表达式(公式 4.13)由图 4.10 中的倒置抛物线表示。需要注意,对于 v D S > v G S − V T N = 2   V v_{DS} > v_{GS} - V_{TN} = 2 \, \text{V} vDS>vGSVTN=2V 的情况,该方程不再表示有效模型。

还需要注意,漏-源电压 v D S v_{DS} vDS 绝不能超过漏区与衬底之间 PN 结的雪崩击穿电压。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值