DeepSeek接入Python,一般电脑也能飞速跑,确实可以封神了!

你好,我是郭震

今天这篇教程介绍:DeepSeep最新推理模型R1接入Python编程,在本地电脑从零搭建方法。

6bf76c69a9b71852b1ef83fec2331915.jpeg

1 这样做有哪些好处?

1) 大模型在本地搭建,除了能够方便个人知识库管理,详见上一篇介绍,还能提效编程学习,比如Python,Java等,学编程就像学做事的思路和逻辑,挺重要也很有意思。

2) DeepSeek最近开源了推理模型R1,开源免费,性能强劲,本文接入的正是DeepSeek的R1;Python的开发环境本文使用的是PyCharm社区版,完全免费,本人使用社区版已超过10年;推荐的插件CodeGPT免费、UI好用。总结来说本文搭建方法:零成本,不需花一分钱

3)为了照顾到关注我的大部分朋友,本文推荐的搭建方法已将电脑配置要求降低最小,我会第二节详细介绍,按照此方法,普通电脑也能飞速跑。

2 框架选择

一句话描述框架选择:DeepSeek-r1:1.5b + PyCharm社区版 + CodeGPT插件

DeepSeek-r1 一共有7个不同版本,随着尺寸参数变大对电脑要求也会变高,相应的本地回复延时也会变长(因为大参数尺寸推理时间会更长):

63e22445d7a4867b2c51002cb204daee.png

电脑没有大显存GPU的朋友,推荐安装1.5b尺寸,这版尺寸普通电脑无GPU的都能流畅运行,延时几乎在1-2秒,更为关键的是,DeepSeek-r1之所以爆出圈有一个重要原因,小尺寸模型回答质量也很高,即便1.5b如此小的参数尺寸亦如此。

简单再介绍下DeepSeek-R1。它回复问题主要包括两部分:思考(Thinking)和 Answer(正式回答),在每次正式回答前,会有一个很长的思考链。之前的大模型在小尺寸参数(如1.5b)回复Token有些简短,质量一般,但是这次DeepSeek-r1:1.5b解决了回复Token数过短,效果不好的难题:

20a2a7e45e1b5ca623169d21a29d5f0d.png

以上就是为什么这样选型和搭建的原因,接下来介绍逐步详细搭建步骤。

3 详细搭建步骤

搭建步骤之前写过一篇,当时有个关键步骤拉下了,再加上r1又刚出来,所以我再重新梳理一遍,这次尽量做到步骤足够细致,尽量让完全未接触编程的朋友也可复现。

第一步,安装Pycharm社区版,完全免费,下载地址在我的公众号后台回复:Pycharm,即可获取。下载后基本都是下一步,在此不再赘述。

第二步,下载ollama并安装deepseek-r1:1.5b,在我的公众号后台回复ollama,获取ollama软件,下载安装后打开软件,输入ollama list可以看到我现在安装了三个本地大模型,其中包括r1:1.5b,刚安装ollama现在执行这条命令应该是空的:

44f52bfb7b3f88aa3ae4c5b5ebc8e9f1.png

接下来执行一条命令:ollama pull deepseek-r1:1.5b,就能直接下载它到自己的电脑,如下所示,

3db37adab0d30e3afcf5a1d8d80e4f6a.png

下载完就安装好了,比较方便。

接下来就可以愉快的接入到PyCharm 了。

第三步,DeepSeek-r1:1.5b接入到PyCharm。首先下载插件:CodeGPT,打开第一步安装的PyCharm,找到文件(File)-设置(Settings)-插件(Plugins),输入CodeGPT,即可点击安装(Install)即可:

ba5566ae364fcebf46dd0847a6202972.png

安装后在工具(Tools)下会出现CodeGPT,点击Providers,找到Ollama(Local),对应下图数字2,再到3这里选择刚刚安装的deepseek-r1:1.5b,点击OK就可以了:

abf89c633f5d0914717b11e890f9c30a.png

下面就可以愉快的在PyCharm中使用DeepSeek-r1加速编程学习了,左侧是代码编辑界面,右侧是r1大模型,直接对话式提问,省去了来回不同页面折腾的麻烦:

bef545ff2b2fe6b4247e2beb7a282b03.png

大家再感受DeepSeek-r1:1.5b大模型的回复延时,几乎1秒钟响应,本人电脑是pro-m1,这响应速度可以了。再看看回答效果,因为公众号文章的GIF帧数有限制,我只截取了前6帧,无任何加速,全部是延时播放速度,展示下效果:

8a9b4c5b74c9f269eb8e6672a086ee2d.gif

CodeGPT插件显示了Tokens数,有些朋友担心这是不是在计费?不是的!只是一个数字统计,无任何费用,因为使用的是本地自己电脑的算力。

另外,CodeGPT应该是目前大模型+编程UI做的最好的插件了,感兴趣的朋友可以根据此篇文章以上三个步骤安装试试。

最后总结一下

本地运行大模型:免费、便捷、适合个人知识管理与编程学习。

选型推荐:deepseek-r1:1.5b + PyCharm社区版 + CodeGPT插件。

在 PyCharm 右侧直接对话 DeepSeek-R1,快速辅助编程。

几乎 1-2秒响应,完全本地快速运行,无额外费用。

以上全文2186字,8张图。如果这篇文章觉得对你有用,可否点个关注。给我个三连击:点赞、转发和在看。若可以再给我加个⭐️,谢谢你看我的文章,我们下篇再见。

### 将DeepSeek集成到Python项目的指南 #### 安装依赖库 为了能够顺利地将DeepSeek集成至Python环境中,首先需要安装必要的软件包。通常情况下,这涉及到通过`pip`来安装特定版本的库文件。假设DeepSeek提供了一个官方支持的Python SDK,则可以通过如下命令完成SDK及其依赖项的安装: ```bash pip install deepseek-sdk==0.1.0 # 假设这是最新稳定版 ``` 此操作会自动处理所有必需的依赖关系并将其下载到当前环境之中[^2]。 #### 初始化配置 一旦完成了上述准备工作之后,在实际应用之前还需要做一定的初始化设置工作。一般而言,这意味着要创建一个新的实例对象,并传入API密钥或者其他形式的身份验证凭证以便于后续调用服务端接口时使用这些信息来进行授权访问控制。 ```python from deepseek import DeepSeekClient client = DeepSeekClient(api_key='your_api_key_here') ``` 这段代码展示了如何利用已有的客户端类快速建立连接实例的方法[^4]。 #### 调用功能模块 有了已经准备好的客户端之后就可以开始探索所提供的各项特性了。比如查询文档、管理索引或是执行复杂的自然语言处理任务等等。下面给出了一段简单的例子用来说明怎样向服务器发送请求以及解析返回的结果数据结构。 ```python response = client.search(query="example query", index_name="documents") for hit in response['hits']: print(f"Document ID: {hit['_id']}, Score: {hit['_score']}") ``` 这里展示的是发起一次搜索请求并将得到的回答按照一定格式打印出来的过程[^1]。 #### 错误处理机制 考虑到网络状况不佳或者是其他不可预见的因素可能会导致某些时候无法正常获取预期的数据响应,因此建议开发者们提前规划好相应的异常捕获逻辑以应对可能出现的各种情况。可以采用try-except语句块的方式实现基本级别的错误恢复措施。 ```python try: result = client.some_method() except Exception as e: print(e) finally: pass # 清理资源或其他收尾动作 ``` 以上就是关于把DeepSeek融入现有Python工程中的主要步骤概述[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值