MCP,看这一篇就够

什么是MCP(Model Context Protocol)

MCP(模型上下文协议)是一个开放标准,用于规范化应用程序如何向大型语言模型(LLM)提供上下文信息。
简单来说,MCP就像AI应用的USB-C接口 —— 正如USB-C为设备提供了与各种外设连接的标准方式,MCP为AI模型提供了与不同数据源和工具连接的标准方式
MCP由Anthropic公司于2024年底推出并开源,旨在解决AI助手与数据源集成的问题。无论你是在开发AI驱动的IDE、增强聊天界面,还是创建自定义AI工作流,MCP都提供了一种标准化的方式,将LLM与它们所需的上下文连接起来

MCP为什么重要?

在AI快速发展的今天,大型语言模型已经变得非常强大,但它们仍然受到一个关键限制:与外部数据和工具的隔离。每添加一个新的数据源或工具,都需要创建自定义实现,这使得真正连接的系统难以扩展。

MCP正是为解决这一挑战而生,它提供了以下核心优势:

  • 标准化连接:用统一协议替代碎片化的集成方式
  • 上下文感知:帮助AI模型理解并记住对话历史和用户偏好
  • 安全数据共享:在用户控制下安全地访问数据
  • 工具使用能力:让AI模型可以执行实际操作
  • 供应商中立:灵活切换不同的LLM提供商

MCP核心架构

MCP采用客户端-服务器架构,由以下关键组件组成:
在这里插入图片描述

  1. MCP主机(Hosts):如Claude Desktop、IDE或需要通过MCP访问数据的AI工具
  2. MCP客户端(Clients):与服务器保持一对一连接的协议客户端
  3. MCP服务器(Servers):通过标准化的MCP协议提供特定功能的轻量级程序
  4. 本地数据源:MCP服务器可以安全访问的计算机文件、数据库和服务
  5. 远程服务:MCP服务器可以连接的外部系统(如API)
    在这里插入图片描述

MCP传输层机制:Stdio和SSE

MCP设计了灵活的传输层,用于处理客户端和服务器之间的通信。传输层是MCP架构中至关重要的一部分,它决定了消息如何在不同组件间传递。MCP支持两种主要的传输机制:Stdio和HTTP with SSE。

Stdio传输

Stdio(标准输入/输出)传输是MCP中最简单的通信机制,特别适合本地进程间通信:
工作原理

  • 使用进程的标准输入/输出流(stdin/stdout)传输JSON-RPC消息
  • 客户端启动服务器进程并通过管道连接其stdin/stdout
  • 消息通过这些管道以文本形式传输,每条消息以换行符分隔

优势

  • 极低的延迟,非常适合本地通信
  • 简单且无需网络配置
  • 无需担心网络安全问题
  • 适合本地工具和插件集成

代码示例(Python服务器)

from mcp.server import MCPServer
from mcp.transport.stdio import StdioTransport

# 创建使用Stdio传输的MCP服务器
server = MCPServer(transport=StdioTransport())
await server.start()
HTTP with SSE传输

HTTP with SSE(Server-Sent Events)传输更适合远程通信和Web集成场景:

工作原理

  • 客户端到服务器的通信:使用标准HTTP POST请求
  • 服务器到客户端的通信:使用SSE提供实时单向数据流
  • SSE允许服务器通过HTTP连接向客户端推送消息,无需客户端请求
  • 所有消息使用JSON-RPC 2.0格式编码

优势

  • 兼容Web标准,可通过HTTP防火墙
  • 支持远程服务器连接
  • 适合分布式系统架构
  • 可扩展性更好,适合云部署
  • 支持多客户端连接到同一服务器

SSE原理

  • 客户端建立与服务器的HTTP连接
  • 服务器保持连接打开并发送格式化为event: data的消息
  • 客户端使用EventSource API处理这些事件
  • 连接失败自动重连

代码示例(Python服务器)

from mcp.server import MCPServer
from mcp.transport.http_sse import HttpSseTransport

# 创建使用HTTP/SSE传输的MCP服务器
server = MCPServer(
    transport=HttpSseTransport(host="127.0.0.1", port=8080)
)
await server.start()
传输层的选择

选择适合的传输机制取决于您的使用场景:

传输机制最适合的场景典型应用
Stdio本地进程间通信
命令行工具和集成
单用户本地应用
桌面AI助手
本地IDE插件
命令行工具
HTTP/SSE远程服务集成
Web应用
多用户系统
云部署
团队协作工具
SaaS应用
Web API
企业集成

在实际应用中,许多MCP实现允许动态选择传输机制,甚至可以同时支持多种传输方式,以便于不同场景下的灵活使用。

MCP核心功能

MCP的功能分为服务器和客户端组件,各自专注于不同方面,共同创建一个强大的AI集成框架。

1. 服务器功能

MCP服务器充当AI系统与周围数字世界之间的专业翻译器,提供以下关键功能:

资源(Resources)

资源是AI的参考库,提供了访问信息的能力:

  • 文档:可以获取相关文件
  • API响应:AI友好格式的结构化数据
  • 数据库记录:对存储信息的直接访问
  • 用户上下文:帮助定制响应的个性化信息

代码示例(Python)

from mcp.server import MCPServer
from mcp.features.resources import ResourceProvider

class FileSystemResourceProvider(ResourceProvider):
    async def get_resource(self, resource_id: str):
        # 从文件系统获取资源
        with open(resource_id, 'r') as f:
            content = f.read()
        return {
            "id": resource_id,
            "content": content,
            "mime_type": "text/plain"
        }

server = MCPServer()
server.add_provider(FileSystemResourceProvider())
await server.start()
提示(Prompts)

提示就像AI交互的配方卡,确保每次都能获得一致的结果:

  • 标准化交互:对常见场景的会话模板
  • 提高输出质量:应用最佳实践
  • 减少幻觉:为AI响应提供护栏
  • 支持版本控制:可以为不同需求维护不同的提示变体

代码示例(TypeScript)

import { MCPServer } from '@modelcontextprotocol/server';
import { PromptProvider } from '@modelcontextprotocol/server/features';

const codeReviewPrompt = {
  id: "code-review",
  name: "代码审查",
  description: "生成详细的代码审查反馈",
  template: "请审查以下代码并提供反馈:\n\n{{code}}\n\n请关注:\n1. 代码质量\n2. 可能的bug\n3. 性能问题\n4. 安全隐患",
  parameters: [
    {
      name: "code",
      description: "需要审查的代码",
      required: true
    }
  ]
};

const server = new MCPServer();
const promptProvider = new PromptProvider([codeReviewPrompt]);
server.addProvider(promptProvider);
server.start();
工具(Tools)

工具将AI从对话伙伴转变为可以完成任务的主动助手:

  • 函数调用:执行具有定义参数的特定操作
  • API交互:与Web服务和平台通信
  • 数据转换:处理和重塑信息
  • 系统操作:在连接的系统上执行受控操作

代码示例(Python)

from mcp.server import MCPServer
from mcp.features.tools import ToolProvider, Tool

class WeatherTool(Tool):
    def get_definition(self):
        return {
            "name": "get_weather",
            "description": "获取指定城市的天气信息",
            "parameters": {
                "type": "object",
                "properties": {
                    "city": {
                        "type": "string",
                        "description": "城市名称"
                    }
                },
                "required": ["city"]
            }
        }
    
    async def execute(self, params):
        city = params.get("city")
        # 在实际应用中,这里会调用天气API
        return f"{city}的天气:晴朗,温度25°C"

server = MCPServer()
server.add_provider(ToolProvider([WeatherTool()]))
await server.start()

2. 客户端功能

MCP客户端是AI模型和MCP服务器之间的桥梁,它帮助AI模型连接各种工具和资源:

资源访问
  • 在对话中直接提及资源:使用如@filename.txt的语法引用特定文件
  • 访问结构化数据:来自文档、数据库和API
  • 查看元数据:了解信息的来源、类型和可靠性
  • 自动包含上下文:在需要时将相关信息带入对话
提示模板
  • 斜杠命令:通过如/summarize的命令访问提示模板
  • 一致格式:确保不同对话之间的标准化输出
  • 特定领域的模板:用于编码、写作或分析任务的专门提示
  • 版本控制:使用特定版本的提示获得一致的结果
工具使用
  • 函数执行:使用参数运行特定操作
  • API集成:安全连接外部服务
  • 系统操作:在连接的系统上执行操作
  • 数据操作:转换和处理信息

客户端代码示例(TypeScript)

import { MCPClient } from '@modelcontextprotocol/client';

// 创建MCP客户端
const client = new MCPClient();

// 连接到文件系统服务器
await client.connect('filesystem', 'stdio', { command: 'mcp-server-filesystem', args: ['/path/to/files'] });

// 获取资源
const resource = await client.getResource('@document.txt');
console.log(resource.content);

// 使用工具
const weatherTool = await client.getTool('get_weather');
const result = await client.executeTool(weatherTool, { city: '北京' });
console.log(result);

// 使用提示模板
const codeReviewPrompt = await client.getPrompt('code-review');
const review = await client.executePrompt(codeReviewPrompt, { code: 'function example() { return null; }' });
console.log(review);

MCP与其他集成方法的比较

以下是MCP与传统API集成和GPTs的比较:

方面MCP传统API集成GPTs
架构基于协议的框架与客户端-服务器架构每个集成的自定义代码具有内置工具的应用程序系统
开发模型开放协议与社区驱动的开发每个集成的自定义开发封闭生态系统与OpenAI控制的开发
定制化通过服务器实现高度可定制完全可定制但需要开发仅限于OpenAI批准的工具和操作
部署选项本地或云部署取决于实现仅通过OpenAI平台的云部署
安全模型细粒度权限与用户同意自定义安全实现OpenAI管理的安全
供应商锁定协议不可知取决于实现与OpenAI生态系统绑定

MCP实施中的挑战与解决方案

尽管MCP功能强大,但实施过程中仍面临一些挑战:

  1. 配置和编程复杂性:MCP配置和编程可能具有挑战性,需要更简单的部署方法和更全面的文档。
    解决方案:利用开源社区和预构建模板简化初始设置,并从成功案例研究中学习最佳实践。

  2. 供应商标准问题:虽然Anthropic已经开源了MCP,但它仍然需要更多主要参与者的支持,以增强市场对其长期可行性的信心。
    解决方案:关注行业发展,寻找主要平台和服务提供商的支持声明,这将表明MCP具有长期发展潜力。

  3. 成熟度和稳定性:作为一个相对较新的协议,MCP仍在不断发展,API和功能可能会发生变化。
    解决方案:密切关注MCP规范的更新,并采用版本控制策略,确保系统能够适应未来的变化。

MCP的未来展望

随着MCP的不断发展,我们可以期待看到:

  1. 更广泛的工具和服务集成
  2. 增强的安全和隐私功能
  3. 对更多语言和平台的支持
  4. 特定行业的MCP扩展

MCP不仅仅是一个技术协议,而是AI系统设计的新范式,为构建更智能、更有用的AI应用铺平了道路。

结论

Model Context Protocol(MCP)代表了AI系统集成的重大进步,通过提供一种标准化的方法将LLM与外部数据源和工具连接起来,极大地简化了开发过程并增强了AI应用程序的功能。

无论您是开发人员、企业决策者还是AI爱好者,了解MCP及其潜力都将帮助您在日益由AI驱动的世界中保持竞争力。随着越来越多的组织采用MCP,我们可以期待看到更加无缝、功能强大且以用户为中心的AI体验的兴起。

作为一个开放标准,MCP代表了一个更加互联、更具协作性的AI未来愿景,在这个未来中,不同的系统可以无缝协作,为用户提供更丰富、更有价值的体验。


参考资料:

  1. Model Context Protocol官方规范
  2. Anthropic公司的MCP介绍
  3. MCP GitHub仓库
<think>好的,我现在需要帮助用户解决如何在数据库中为cursor实现或多配置MCP的问题。首先,我需要明确用户的需求。用户提到的“MCP”可能是指“MyCursor Provider”或者某种自定义的内容提供者,参考他们提供的代码片段,特别是引用[1]和[2],里面有一个MyCursor类继承自BetterCursorWrapper,并且在构造函数中传入了ContentProvider(mcp)。所以,用户可能想要了解如何创建这样的游标,并关联到特定的内容提供者。 接下来,我需要确定用户的问题背景。他们可能在开发Android应用,涉及到数据库操作,特别是使用ContentProvider和自定义Cursor。用户可能希望了解如何正确配置和管理这些游标,以便在数据变化时能重新加载数据,如requery方法所示。 然后,我需要回忆Android中Cursor和ContentProvider的工作原理。Cursor用于遍历查询结果,而ContentProvider管理数据访问。用户提供的MyCursor类在requery时调用了MyContactsProvider.loadNewData(mcp),这可能用于刷新数据。因此,实现MCP的关键在于如何将自定义Cursor与ContentProvider结合,确保数据动态更新。 接下来,我需要组织回答结构。首先,解释MCP的可能含义,然后分步骤说明如何实现,包括创建自定义Cursor、集成内容提供者、配置数据源等。同时,需要引用用户提供的代码示例,说明各个部分的作用,比如构造函数如何接收ContentProvider实例,requery方法如何更新数据。 还要考虑用户可能的后续问题,比如动态数据加载、多配置管理、生命周期处理等,所以在回答中可以加入这些扩展点。此外,确保回答符合之前的系统指令,使用正确的中文,行内公式用$...$,但这里可能用不上数学公式,所以可能不需要。同时,生成相关问题,帮助用户进一步探索。 最后,检查回答是否符合所有要求:结构清晰,步骤明确,引用用户提供的代码作为示例,并添加引用标识。确保没有使用Markdown,语言口语化,自然分段,使用缩进表示代码块。</think>在Android开发中,为Cursor实现MCP(MyCursor Provider)通常涉及自定义Cursor类与内容提供者(ContentProvider)的集成。以下是关键实现步骤: 一、创建MCP的核心组件 1. 自定义Cursor类需继承CursorWrapper或其子类 ```java public class MyCursor extends BetterCursorWrapper { private ContentProvider mCp; // 内容提供者引用 public MyCursor(MatrixCursor mc, ContentProvider inCp) { super(mc); // 初始化基础游标[^1] mCp = inCp; // 注入内容提供者实例[^2] } } ``` 二、实现动态数据加载 1. 重写requery()方法实现数据刷新 ```java @Override public boolean requery() { MatrixCursor mc = MyContactsProvider.loadNewData(mCp); // 通过MCP获取新数据[^1] this.setInternalCursor(mc); // 更新底层游标数据 return super.requery(); } ``` 三、多配置实现方案 1. 通过构造器注入不同配置 ```java // 创建支持多个数据库配置的Cursor public MyCursor(MatrixCursor mc, ContentProvider cp, DatabaseConfig config) { super(mc); applyConfiguration(config); // 应用数据库连接配置 bindContentProvider(cp); // 绑定内容提供者 } ``` 四、关键配置管理 1. 数据源配置建议: - 使用$ContentResolver$处理URI映射 - 通过$UriMatcher$实现多表支持 - 配置参数应包含: ```java class McpConfig { String databaseName; int version; SQLiteOpenHelper helper; } ``` 五、生命周期管理要点 1. 必须实现$close()$方法释放资源: ```java @Override public void close() { releaseDatabaseConnection(); // 释放数据库连接 super.close(); // 执行父类关闭操作[^2] } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值