相机内参与畸变模型

本文介绍了相机内参,包括3*3的相机内参矩阵和畸变系数,并详细讲解了Brown-Conrady畸变模型及其在实际应用中的修正过程。利用Matlab进行相机内参标定,以及OpenCV中图像矫正的实现,主要参考了OpenCV的源码分析。
摘要由CSDN通过智能技术生成

1.无畸变

相机内参包括相机矩阵参数和畸变系数。
相机内参矩阵为3*3的矩阵:M = [fx 0 ppx ; 0 fy ppy ; 0 0 1]
畸变系数:k1 k2 k3 p1 p2
使用matlab可以很方便地进行相机内参标定

首先看一下无畸变情况下,已知相机坐标系内的一个点[xc, yc, zc],通过内参矩阵求出该点在图像平面的投影点[u, v]。如下图,其中M矩阵边上相机的内参矩阵,x = xc / zc, y = yc / zc:
在这里插入图片描述

2.Brown-Conrady 畸变模型

当相机存在畸变的时候,需要根据畸变模型修正(x, y)的值为(x’ , y’), 然后使 u = x’ * fx + ppx, v = y’ * fy + ppy。畸变模型如下图,此处介绍的是Brown-Conrady 畸变模型:
在这里插入图片描述
其中k1,k2,k3称为径向畸变,由于不能制作出一个理想数学模型的透镜,光学中心畸变为0,越远离中心,畸变效果越大;p1,p2称为切向畸变,由于安装透镜过程中导致透镜与图像平面不平行造成的畸变。
下面给出相应的代码实现:

struct Intrinsics
{
   
  float         ppx;
  float         ppy;
  float         fx;
  float         fy;
  float         coeffs[5];
  bool          distortion;
};

void Project_Point_To_Pixel
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值