1.无畸变
相机内参包括相机矩阵参数和畸变系数。
相机内参矩阵为3*3的矩阵:M = [fx 0 ppx ; 0 fy ppy ; 0 0 1]
畸变系数:k1 k2 k3 p1 p2
使用matlab可以很方便地进行相机内参标定
首先看一下无畸变情况下,已知相机坐标系内的一个点[xc, yc, zc],通过内参矩阵求出该点在图像平面的投影点[u, v]。如下图,其中M矩阵边上相机的内参矩阵,x = xc / zc, y = yc / zc:
2.Brown-Conrady 畸变模型
当相机存在畸变的时候,需要根据畸变模型修正(x, y)的值为(x’ , y’), 然后使 u = x’ * fx + ppx, v = y’ * fy + ppy。畸变模型如下图,此处介绍的是Brown-Conrady 畸变模型:
其中k1,k2,k3称为径向畸变,由于不能制作出一个理想数学模型的透镜,光学中心畸变为0,越远离中心,畸变效果越大;p1,p2称为切向畸变,由于安装透镜过程中导致透镜与图像平面不平行造成的畸变。
下面给出相应的代码实现:
struct Intrinsics
{
float ppx;
float ppy;
float fx;
float fy;
float coeffs[5];
bool distortion;
};
void Project_Point_To_Pixel