贝叶斯啊贝叶斯,你这脑袋咋长的

       20190417更新:

       今天看了一篇好文,对于“贝爷”(贝叶斯)的讲解可谓深入浅出,醍醐灌顶,还把最小二乘问题的理论依据用贝叶斯解释的清清楚楚,所以,来这里鄙视一下以前的自己,太没水平了。。。。。。继续学习。。。。附:好文连接

       以前不懂贝叶斯,怎么看都困,考试过了就再也想不起来了,如今工作才发现这些数学知识如此有用,而且那么神秘又充满智慧,但是理解了之后,发现原来这么简单,之后不由的感叹,简单中的智慧太他么神奇了!

       学习SLAM遇到了卡尔曼滤波,学习卡尔曼滤波遇到了贝叶斯,于是随便找了一篇博客啃起来,发现这个例子之前很久就看过,现在再看,真有意思:

 再看贝叶斯公式:

                                    

变换一下:

                                  P(w |x)P(x) = p(x|w)p(w)

来来来,理解一下来:         

        我们从公园中抓了一个人,是个男的,还穿着凉鞋的,这个概率是多少???好,给你一个智能机器人去抓,具体过程如下:

         设:    p(w1):抓到一个男人的概率;

                    p(x):抓到一个穿凉鞋的概率;

 

          那么:我们开始抓人了:

                     情况一:抓到一个“人”,我们一看:

                           机器人 : 我擦,男的!

                               你    :概率多少?

                          机器人  :p(w1);

                            你        : OK!再看看穿凉鞋了吗?

                            机器人 :嗯嗯,穿啦!

                           你          :好,这个男的穿拖鞋的概率是多少?

                           机器人  :奥!已知是的男的哈,P(x|w1)啊。

                             你       :行了,把者两个概率给我乘一块儿!

                          机器人   :嗷!俩概率不相关哈!p(w1)P(x|w1)哦了,完事!

                        

                      情况二:抓到一个“人”,我们一看:

                            机器人: 我擦,穿凉鞋啦!

                           你         :概率多少?

                            机器人 :p(x);

                            你        : OK!再看看是男的还是女的?

                            机器人  :嗯嗯,男哒!

                             你       :好,这个穿凉鞋的人是男人的概率多少?

                            机器人 :噢,已知是个穿凉鞋的,P(w1|x)啊。

                              你      :行了,把者两个概率给我乘一块儿!

                              机器人:嗷!俩概率不相关哈!p(x)P(w1|x)哦了,完事!

         那么问题来了:

                         两种情况下,抓的都是同一类人(男的穿凉鞋),那么概率是相等的,也就是说:

                                           p(w1|x)p(x) = p(x|w1)p(w1)

                          没有问题吧,你要非说有问题,那么,我问问你,难道你先观察“性别”还是先观察“穿着”会影响你抓到这个人的概率吗?注意哈,已经抓住了,采样过程已经结束了,跟你先观察“性别”还是“穿着”没关系啦!OK!

            总结一下:

                生活中很多性质都是同时存在于同一个个体或者事件当中的,很多个体同时具备很多不相关的性质的时候,我们很难一下子弄清他们之间的关系,就例如上面的例子,而我们研究这种问题的时候,习惯性的一个性质一个性质的进行研究,必如研究(统计)性别比例时,不考虑其他因素,统计穿着时,不考虑性别,这样就很容易的获得了各个性质的独立分布情况,注意,由于我们是独立统计的,所以获取的统计结果也是独立的,然而,当我们需要对几种性质同时存在的“事实”进行研究时,研究的问题发生了变化,问题不再是“男-女”“穿拖鞋-没穿拖鞋”两个问题的独立思考过程了,变成了“男-拖鞋”“男-没穿拖鞋”“女-穿拖鞋”“女-没穿拖鞋”这样一个问题了,两个统计问题变成了一个,实际上我们可以通过统计来对问题进行分析,比如统计以下情况的概率问题:

                                           男穿拖鞋---P1

                                           男没穿拖鞋-----P2

                                           女穿拖鞋----P3

                                           女没穿拖鞋-----P4

.......................................................................................................................................................................................................

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值