本文是阿里巴巴达摩院视觉实验室潘攀博士团队在电商视频场景中商品定位系统的一次应用落地。如今,电商场景的购物直播和短视频呈爆炸式增长。然而,卖家需要手动将商品图像与视频中展示时间段进行匹配,过程十分复杂。为了解决这个问题,多模态商品定位系统“时尚看点”应运而生,能够准确地定位直播视频中的主播展示商品的时间段作为看点。视觉内容、语言特征和交互上下文通过多模态学习被联合建模。系统实现视频内容结构化和多模式检索两个算法模块,自动完成视频与商品的精确匹配。“时尚看点”在消费者观看视频过程中引导其关注对应商品讲解,也可以通过搜索和推荐帮助卖家有效地投放商品内容。
1. 背景
在电商平台上,通过直播和短视频来购物越来越流行。消费者会在观看视频的过程中购买自己喜爱的商品。特别地,在直播过程中,卖家会展示、介绍、讲解上百种商品。如果客户想要购买正在讲解的商品,需要从相关联的商品列表中手动选择,会极大地影响购买效率和消费体验。因此,根据视觉、解说以及交互的内容自动定位出相应商品讲解片段,并向消费者推荐相应的商品,具有很高的价值。这样在观看视频的过程中,用户的购物体验也将会大大提升。由于展示商品的视角多样,前台及背景商品干扰等,传统视觉搜索方法在这种商品定位问题上效果不佳。准确识别视频流中的商品也面临着训练数据不充分的局限性。为了弥补匹配信息的不足,伴随视频的解释性音频和交互性评论,能够补充丰富的上下文信息。因此,利用可视化CNN模型、自动语音识别(ASR)和自然语言处理(NLP)工具从多种模态中提取特征,可以帮助在实时视频流中精确定位商品片段。
2. 系统框架
在“时尚看点”系统中,商品图像列表和实时视频流为系统输入,商品匹配的时间段作为看点输出。上图展示了该系统在直播平台的工作流程,主要涉及搭建两个算法模块:视频内容结构化和多模态检索。
内容结构化
这里内容结构化旨在未剪辑的视频提取出商品轨迹的实例。为了获取准确且稳定的商品轨迹,我们对视频中商品对象联合检测和跟踪,利用高效的One-stage Tracker生成轨迹候选,采用DLA-34骨干网络学习具有检测、表观和跟踪分支的一体化商品检测跟踪器,兼顾高精度且保持较高的速度。商品检测精度虽然可以满足需求,小尺度商品识别仍然存在严重的长尾问题。针对此,我们设计了一种层次化商品识别方法,有效地降低识别模糊度。
多模态检索
为了保证检索质量和计算效率,我们采用联合视觉-语言的多模态紧凑表征检索方案,通过轨迹到图像的度量学习,利用三元组约束提高检索准确度。同时,通过ASR将音频转换成文本,使用多模态的Transformer模型提取语言特征。此外,我们挖掘视频相关的评论和标题,用来进一步补充语言数据。通过多模态视觉和语言的融合,模型可以学习到统一的紧凑表征,来计算视频流和商品图像的相关性,从而极大地提高了商品图像的召回率。整个系统还需要为海量视频提供实时在线服务,我们构建了一套包含解码、索引和定位的流媒体视频处理引擎。下图展示了系统的可视化结果,(A)轨迹结构化结果,(B)商家端挂品接口,©消费端商品投放接口。
3.实验
系统在包含多个电商类目(衣服、包等)的直播视频上做商品定位的实验。每个直播持续时间约为5-7小时,采用召回率作为评价指标。“时尚看点”采用轨迹候选和多模态特征(Mlt_Trk)取得了最好的对比效果,验证了商品定位的优越性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。