RAG系统实现方案概览
我们将基于下图所示的框架,来构建一个完整的RAG系统。
1. Indexing(索引)
Indexing是任何RAG系统的第一步,在实际应用场景中,文档尺寸可能非常大,因此需要将长篇文档分割成多个文本块,以便更高效地处理和检索信息。
Indexing环节主要面临三个难题
-
首先,内容表述不完整,内容块的语义信息受分割方式影响,致使在较长的语境中,重要信息被丢失或被掩盖。
-
其次,块相似性搜索不准确,随着数据量增多,检索中的噪声增大,导致频繁与错误数据匹配,使得检索系统脆弱且不可靠。
-
最后,参考轨迹不明晰,检索到的内容块可能来自任何文档,没有引用痕迹,可能出现来自多个不同文档的块,尽管语义相似,但包含的却是完全不同主题的内容。
在这个框架中,我们将在索引环节实现Chunk optimization(块优化)、Multi-representation indexing、Specialized Embeddings(特殊嵌入)和Hierachical Indexing(多级索引)这四种优化方案。
2. Query Translation
Query Translation主要处理用户的输入。在初始的RAG系统中,往往直接使用原始query进行检索,可能会存在三个问题:
-
第一,原始query的措辞不当,尤其是涉及到很多专业词汇时,query可能存在概念使用错误的问题;
-
第二,往往知识库内的数据无法直接回答,需要组合知识才能找到答案;
-
第三,当query涉及比较多的细节时,由于检索效率有限,大模型往往无法进行高质量的回答。
在这个框架中,我们将在这个环节实现Multi-query(多查询)、Rag-Fusion、Decomposition(查询分解)、Stepback和HYDE这五种优化方案
3. Routing(路由)
路由的作用,是为每个Query选择最合适的处理管道,以及依据来自模型的输入或补充的元数据,来确定将启用哪些模块。比如在索引环节引入多重索引技术后,就需要使用多级路由机制,根据Query引导至最合适的父级索引。
在路由环节,我们将实现Logical routing(基于逻辑的路由)和Sematic Routing(基于语义的路由)两种方案。
4. Query Construction(查询构建)
查询构建主要是为了将自然语言的Query,转化为某种特定机器或软件能理解的语言。因为随着大模型在各行各业的渗透,除文本数据外,诸如表格和图形数据等越来越多的结构化数据正被融入 RAG 系统。
比如在一些ChatBI的场景下,就需要将用户的Query内容,转化为SQL语句,进行数据库查询,这就是Text-to-SQL。再比如工业设计场景下,可能需要将用户的Query转化为设计指令,或者设备控制指令,这就是Text-to-Cypher。
在查询构建环节,我们将实现Text-to-SQL、Text-to-Cypher和Self-Query(让大模型自行构建Query)三种优化方案。
5. Retrieval(检索)
在检索的时候,用户的问题会被输入到嵌入模型中进行向量化处理,然后系统会在向量数据库中搜索与该问题向量语义上相似的知识文本或历史对话记录并返回。
在朴素RAG中,系统会将所有检索到的块直接输入到 LLM生成回答,导致出现中间内容丢失、噪声占比过高、上下文长度限制等问题。
在检索环节,我们将实现Reranking(重排序)、Refinement(压缩)、Corrective Rag(纠正性Rag)等方案。
6. Generation(生成)
在生成环节,可能会出现以下问题:
-
第一,当系统忽略了以特定格式(例如表格或列表)提取信息的指令时,输出可能会出现格式错误;
-
第二,输出错误或者输出不完整,比如对于一些比较类问题的处理往往不尽人意,以及可能出现的幻觉问题;
-
第三,可能会输出一些不太符合人类/社会偏好,政治不正确的回答
在生成环节,我们将重点介绍Self-Rag方案。
要覆盖所有上面提到的优化环节,需要较长的内容篇幅,因此风叔会分成几篇文章来写。接下来,我们先从整体上,看看一个最小化的RAG系统是如何实现的。
构建最小化的Naive Rag系统
RAG发展初期,其核心框架由索引、检索和生成构成,这种范式被称作Naive RAG。Naive Rag的原理非常简单,包括以下三个步骤:
-
索引:这一过程通常在离线状态下进行,将原始文档或数据进行清洗并分块,然后将分块后的知识通过embedding模型生成语义向量,并创建索引。
-
检索:对用户输入的Query问题,使用相同的embedding模型,计算Query嵌入和文档块嵌入之间的向量相似度,然后选择相似度最高的前N个文档块作为当前问题的增强上下文信息。
-
生成:将原始Query和相关文档合并为新的提示,然后由大型语言模型基于提供的信息回答问题。如果有历史对话信息,也可以合并到提示中,用于进行多轮对话。
下面,风叔通过实际的源码,详细介绍如何构建一个最小化的Naive Rag系统,具体的源代码地址可以在文末获取。
第一步 建立索引
首先,我们导入一些示例Documents,以导入外部博客为例,我们直接使用WebBaseLoader从目标地址读取数据。
import bs4``from langchain_community.document_loaders import WebBaseLoader``loader = WebBaseLoader(` `web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),` `bs_kwargs=dict(` `parse_only=bs4.SoupStrainer(` `class_=("post-content", "post-title", "post-header")` `)` `),``)``blog_docs = loader.load()
然后我们需要对文档进行分块。在这个例子中,我们先把流程跑通,采用最简单的文本分割器,尽量按照段落进行分割。
# Split``from langchain.text_splitter import RecursiveCharacterTextSplitter``text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(` `chunk_size=300,`` chunk_overlap=50)`` ``# Make splits``splits = text_splitter.split_documents(blog_docs)
接下来,我们需要将文本分割的结果存入向量数据库,默认使用了OpenAI的Embedding模型。
# Index``from langchain_openai import OpenAIEmbeddings``from langchain_community.vectorstores import Chroma``vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
第二步 检索
检索过程非常简单。首先构建检索器retriever,设置K=1,即只召回最相关的一个内容块;然后根据问题找到最相关的内容,存入docs
retriever = vectorstore.as_retriever(search_kwargs={"k": 1})``docs = retriever.get_relevant_documents("What is Task Decomposition?")
第三步 生成
生成环节,我们先定义Prompt。先跑通流程,我们定义一个最简单的Prompt
from langchain_openai import ChatOpenAI``from langchain.prompts import ChatPromptTemplate`` ``# Prompt``template = """Answer the question based only on the following context:``{context}`` ``Question: {question}``"""`` ``prompt = ChatPromptTemplate.from_template(template)
然后调用大模型生成最终回复,我们使用了gpt-3.5-turbo。我们先把temperature调到0,减少大模型输出的随机性。
from langchain_core.output_parsers import StrOutputParser``from langchain_core.runnables import RunnablePassthrough`` ``llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)`` ``rag_chain = (` `{"context": retriever, "question": RunnablePassthrough()}` `| prompt` `| llm` `| StrOutputParser()``)`` ``rag_chain.invoke("What is Task Decomposition?")
到这里,一个最最简单的Rag系统就搭建完了,其原理非常简单易懂。“麻雀虽小,五脏俱全”,大家也可以拿这段代码自己做一些修改,比如读取pdf文件、word文档等等。
总结
经过上述流程,我们搭建了一个非常简单的Naive RAG系统,这个系统解析了一篇博客文章,然后接收用户提问,并使用博客的内容做增强生成。这是一个非常简单的框架,也很易于理解。
但是在实际应用中还有非常多需要优化的地方,包括Indexing(索引)、Query Translation(查询转换)、Routing(路由)、Query Construction(查询构建)、Retrival(检索)和Generation(生成),每个环节都有多种有效的优化方式。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。