TrendMaster 是一款开源的股票价格预测工具,基于强大的 Transformer 深度学习架构,旨在为投资者提供高精度的预测分析和数据驱动的洞察力。它集成了先进的算法、高效的数据处理和用户友好的界面,为量化交易爱好者和投资者提供了极具竞争力的解决方案。
项目背景
股票市场瞬息万变,投资决策需要依赖快速且准确的数据分析。传统的时间序列分析方法难以捕捉复杂的市场模式,而深度学习特别是 Transformer 架构,在处理大规模金融数据时展现了巨大的潜力。TrendMaster 利用 Transformer 的优势,为用户提供从历史数据挖掘到未来价格预测的全面支持。
项目优势
1. 基于 Transformer 的预测模型
TrendMaster 采用先进的 Transformer 架构,能够准确捕捉股票价格的时间序列模式,提供高效的短期和中长期价格预测。
2. 高度精确的预测
通过优化模型参数和训练策略,TrendMaster 的均方误差(MAE)仅为几个百分点,显著提升预测的可靠性。
3. 实时数据可视化
内置实时数据可视化模块,用户可直观了解预测结果和市场趋势。
4. 灵活的模型参数定制
支持用户根据需求自定义模型参数,适应不同的股票和交易策略。
5. 多标的支持
能够同时处理多种股票数据,适合投资组合管理需求。
安装与环境配置
1. 环境要求
-
Python >= 3.7
-
PyTorch >= 1.7
-
CUDA(可选,用于加速计算)
2. 安装
通过 pip 快速安装:
pip install TrendMaster
快速上手
以下是一个完整的示例,展示如何使用 TrendMaster 进行股票数据的预测:
代码示例
from trendmaster import (` `DataLoader,` `TransAm,` `Trainer,` `Inferencer,` `set_seed,` `plot_results,``)`` ``import pyotp``import torch`` ``# 设置随机种子以保证可重复性``set_seed(42)`` ``# 配置账户信息(如使用 Zerodha 数据源)``user_id = 'YOUR_ZERODHA_USER_ID'``password = 'YOUR_ZERODHA_PASSWORD'``totp_key = 'YOUR_ZERODHA_2FA_KEY'`` ``# 生成两步验证代码``totp = pyotp.TOTP(totp_key)``twofa = totp.now()`` ``# 初始化数据加载器并验证账户``data_loader = DataLoader()``kite = data_loader.authenticate(user_id=user_id, password=password, twofa=twofa)`` ``# 准备训练和测试数据``train_data, test_data = data_loader.prepare_data(` `symbol='RELIANCE',` `from_date='2023-01-01',` `to_date='2023-02-27',` `input_window=30,` `output_window=10,` `train_test_split=0.8``)`` ``# 初始化模型和训练器``device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')``model = TransAm(num_layers=2, dropout=0.2).to(device)`` ``trainer = Trainer(model, device, learning_rate=0.001)``train_losses, val_losses = trainer.train(train_data, test_data, epochs=2, batch_size=64)`` ``# 保存训练好的模型``trainer.save_model('transam_model.pth')`` ``# 初始化推理器并预测未来价格``inferencer = Inferencer(model, device, data_loader)``predictions = inferencer.predict(` `symbol='RELIANCE',` `from_date='2023-02-27',` `to_date='2023-12-31',` `input_window=30,` `future_steps=10``)`` ``# 评估模型性能``test_loss = inferencer.evaluate(test_data, batch_size=32)``print(f"Test Loss: {test_loss}")``
示例与可视化
样本预测结果
Transformer 模型在不同市场条件下的表现:
用户界面示例
TrendMaster 提供了简洁直观的用户界面,便于实时监控预测数据:
使用场景
- 个人投资者
- 通过对股票价格的准确预测,辅助投资决策。
- 量化研究人员
- 利用 Transformer 模型验证新的交易策略。
- 基金管理者
- 提高组合管理中的风险控制和收益优化能力。
项目文件结构
TrendMaster/` `├── trendmaster/ # 核心模块` `├── data/ # 数据文件夹` `├── docs/ # 文档` `├── examples/ # 示例代码` `├── tests/ # 测试用例` `└── README.md # 项目说明` `
总结
TrendMaster 是一款功能强大的股票预测工具,它将先进的 Transformer 技术与金融数据分析相结合,为投资者和研究人员提供了前所未有的洞察力和操作便利性。如果您想尝试通过数据驱动优化投资策略,TrendMaster 将是您的理想选择。
项目链接:https://github.com/hemangjoshi37a/TrendMaster
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。