大模型的提示工程(Prompt Engineering) 是通过精心设计输入文本(Prompt),引导大语言模型(LLM)生成符合预期输出的技术。在Text2SQL(自然语言转SQL)和Text2API(自然语言调接口)场景中,提示工程的核心目标是将自然语言问题转化为准确的 SQL 查询和具体的 API 调用参数。
Text2SQL和Text2API的提示工程本质是是将领域知识显式化,通过角色定义和业务知识注入(如数据库Schema、API文档),让模型“理解”自然语言背后的真实意图,并将其转化为可执行的结构化指令。
一、Text2SQL
Text2SQL(文本转SQL)是什么?Text2SQL是一种将自然语言描述的查询需求,自动转换为结构化查询语言(SQL)的技术。
LangChain****提供SQLDatabaseChain
**,**支持将数据库Schema动态注入提示词,实现端到端的SQL生成与执行。LangChain可以自动提取数据库表结构(Schema)作为上下文。支持多轮对话修正SQL语句。
from langchain.utilities import SQLDatabasefrom langchain.chains import SQLDatabaseChainfrom langchain_community.llms import OpenAIdb = SQLDatabase.from_uri("sqlite:///sales.db")llm = OpenAI(temperature=0)chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)response = chain.run("2024年销售额超过100万的产品是什么?")
******如何实现Text2SQL?******通过自然语言处理技术进行语义解析(包括实体识别、关系抽取、意图理解),结合预加载的数据库Schema信息,利用大语言模型(LLM)生成符合语法规范的SQL语句。**
*1. 输入解析:用户提问 → 提取关键实体(表名、字段、条件)。*
-
- 例:****“统计2024年销售额超过100万的产品” → 提取“销售额(sales)”、“产品(product)”、“年份(year=2024)”、“条件(>1,000,000)”。
2. Schema绑定:结合数据库表结构(Schema),明确字段和表关系。
-
-
关****键:在Prompt中提供Schema,如:
表orders: id (int), product_id (int), sales (float), date (date) 表products: id (int), name (str), category (str)
-
3. SQL生成:模型根据Schema和用户意图生成查询语句。
SELECT p.name, SUM(o.sales) AS total_sales FROM orders o JOIN products p ON o.product_id = p.id WHERE YEAR(o.date) = 2023 GROUP BY p.id HAVING total_sales > 1000000;
4. 结果验证:执行SQL并返回数据,若失败则优化Prompt或追问用户。
二、Text2API
**Text2API(文本转API调用)是什么***?**Text2API(文本转API调用)** **是一种将自然语言描述的用户需求自动转换为对应用程序接口(API)的调用请求的技术。*****
LangChain提供APIChain**,**支持将API文档(如OpenAPI/Swagger)嵌入提示词,引导大模型生成请求参数,可以支持多步骤调用(如先查询用户ID,再调用订单API)。
from langchain.chains import APIChainfrom langchain_community.llms import OpenAIllm = OpenAI(temperature=0)api_docs = """API文档:- 发送邮件:POST /send_email 参数:to(收件人), subject(主题), content(内容) - 查询天气:GET /weather 参数:city(城市), date(日期) """chain = APIChain.from_llm_and_api_docs(llm, api_docs, verbose=True)response = chain.run("给Allen发邮件,主题是会议提醒,内容为明天下午2点开会。")
`如何实现Text2API?通过自然语言处理技术进行语义解析(含意图识别、实体抽取、上下文理解),结合预加载的API文档信息,利用大语言模型(LLM)生成符合语法规范的API调用请求。```
1. API目录管理:维护API文档(端点、参数、权限)。
-
-
**例:**邮件API文档:
POST /send_email 参数:to (str), subject (str), content (str) 权限:需用户OAuth令牌
-
2. 意图识别:模型解析用户指令,匹配目标API。
-
- 例:****“给Allen发邮件,主题是项目开发进度,内容为‘本周完成80%’” → 调用
/send_email
。
- 例:****“给Allen发邮件,主题是项目开发进度,内容为‘本周完成80%’” → 调用
3. 参数填充:提取并验证参数(如邮箱、内容)。
{ "endpoint": "/send_email", "params": {"to": "zhangsan@company.com", "subject": "项目进度", "content": "本周完成80%"} }
**4. 执行与反馈:调用API并返回结果(成功/失败原因)。****
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。