一文搞懂大模型提示工程(Text2SQL、Text2API)

大模型的提示工程(Prompt Engineering) 是通过精心设计输入文本(Prompt),引导大语言模型(LLM)生成符合预期输出的技术。在Text2SQL(自然语言转SQL)和Text2API(自然语言调接口)场景中,提示工程的核心目标是将自然语言问题转化为准确的 SQL 查询和具体的 API 调用参数。

Text2SQL和Text2API的提示工程本质是是将领域知识显式化,通过角色定义和业务知识注入(如数据库Schema、API文档),让模型“理解”自然语言背后的真实意图,并将其转化为可执行的结构化指令。WTH is Prompt Engineering? - DEV Community

一、Text2SQL

Text2SQL(文本转SQL)是什么?Text2SQL是一种将自然语言描述的查询需求,自动转换为结构化查询语言(SQL)的技术。Understanding the Ways for Text-to-SQL with LLMs | by Elmo | Generative AI

LangChain****提供SQLDatabaseChain**,**支持将数据库Schema动态注入提示词,实现端到端的SQL生成与执行。LangChain可以自动提取数据库表结构(Schema)作为上下文。支持多轮对话修正SQL语句。

SQL | 🦜️🔗 LangChain

from langchain.utilities import SQLDatabasefrom langchain.chains import SQLDatabaseChainfrom langchain_community.llms import OpenAIdb = SQLDatabase.from_uri("sqlite:///sales.db")llm = OpenAI(temperature=0)chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)response = chain.run("2024年销售额超过100万的产品是什么?")

******如何实现Text2SQL?******通过自然语言处理技术进行语义解析(包括实体识别、关系抽取、意图理解),结合预加载的数据库Schema信息,利用大语言模型(LLM)生成符合语法规范的SQL语句。**

*1. 输入解析:用户提问 → 提取关键实体(表名、字段、条件)。*

    • 例:****“统计2024年销售额超过100万的产品” → 提取“销售额(sales)”、“产品(product)”、“年份(year=2024)”、“条件(>1,000,000)”。

2. Schema绑定:结合数据库表结构(Schema),明确字段和表关系。

    • 关****键:在Prompt中提供Schema,如:

      表orders: id (int), product_id (int), sales (float), date (date)  
      表products: id (int), name (str), category (str)  
      

3. SQL生成:模型根据Schema和用户意图生成查询语句。

SELECT p.name, SUM(o.sales) AS total_sales  FROM orders o  JOIN products p ON o.product_id = p.id  WHERE YEAR(o.date) = 2023  GROUP BY p.id  HAVING total_sales > 1000000;  

4. 结果验证:执行SQL并返回数据,若失败则优化Prompt或追问用户。

No More Text2SQL, It's Now RAG2SQL! | by Angelina Yang | Medium

二、Text2API

**Text2API(文本转API调用)是什么*****Text2API(文本转API调用)** **是一种将自然语言描述的用户需求自动转换为对应用程序接口(API)的调用请求的技术。*****

Pseudo Function Calling for Gemini API Through Prompt Engineering | by  Kanshi Tanaike | Google Cloud - Community | Medium

LangChain提供APIChain**,**支持将API文档(如OpenAPI/Swagger)嵌入提示词,引导大模型生成请求参数,可以支持多步骤调用(如先查询用户ID,再调用订单API)。

from langchain.chains import APIChainfrom langchain_community.llms import OpenAIllm = OpenAI(temperature=0)api_docs = """API文档:- 发送邮件:POST /send_email    参数:to(收件人), subject(主题), content(内容)  - 查询天气:GET /weather    参数:city(城市), date(日期)  """chain = APIChain.from_llm_and_api_docs(llm, api_docs, verbose=True)response = chain.run("给Allen发邮件,主题是会议提醒,内容为明天下午2点开会。")

`如何实现Text2API?通过自然语言处理技术进行语义解析(含意图识别、实体抽取、上下文理解),结合预加载的API文档信息,利用大语言模型(LLM)生成符合语法规范的API调用请求。```

1. API目录管理:维护API文档(端点、参数、权限)。
    • **例:**邮件API文档:

      POST /send_email  参数:to (str), subject (str), content (str)  权限:需用户OAuth令牌  
      
2. 意图识别:模型解析用户指令,匹配目标API。
    • 例:****“给Allen发邮件,主题是项目开发进度,内容为‘本周完成80%’” → 调用 /send_email

3. 参数填充:提取并验证参数(如邮箱、内容)。

{    "endpoint": "/send_email",    "params": {"to": "zhangsan@company.com", "subject": "项目进度", "content": "本周完成80%"}  }  

**4. 执行与反馈:调用API并返回结果(成功/失败原因)。****NL2SQL技术方案系列(1):NL2API、NL2SQL技术路径选择;LLM选型与Prompt工程技巧,揭秘项目落地优化之道- 汀、人工智能- 博客园

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

为了构建一个新闻评论舆情热点分析平台,你需要掌握如何结合Python编程语言、HTML5、MySQL数据库以及数据挖掘技术进行数据的自动化抓取、处理和可视化。以下是一些具体步骤和推荐方法: 参考资源链接:[PYTHON驱动的网易新闻舆情热点分析平台](https://wenku.csdn.net/doc/331yccjn09) 首先,使用Python的requests库进行网页数据的抓取。你可以创建一个爬虫脚本,定时从新闻网站抓取新闻内容和用户评论。为了提高效率和灵活性,可以利用BeautifulSoup或lxml库解析HTML数据。 其次,对于数据的清洗和预处理,可以使用pandas库,它提供了强大的数据结构化功能,可以方便地对抓取的数据进行清洗、转换和分析。这一阶段的目的是将非结构化的网页数据转化为结构化的表格数据,便于后续分析。 对于数据分析和热点发现,你需要运用自然语言处理(NLP)技术和机器学习算法。例如,可以使用nltk或spaCy等库进行文本的分词、去除停用词、词性标注等处理。情感分析可以通过训练一个分类器来实现,如使用TextBlob库或构建基于规则的系统。关键词提取和话题聚类可以使用TF-IDF模型或LDA算法进行分析。 数据可视化是舆情分析中不可忽视的一环。可以使用matplotlib、seaborn或Plotly等库来创建图表和图形,直观展示数据和分析结果。例如,使用词云可视化关键词,或者用柱状图、折线图展示不同时间段内的舆情变化。 最后,将处理后的数据存储到MySQL数据库中,使用SQL语句进行高效的数据检索和更新。为了支持大规模数据处理,MySQL数据库应配置合理,并且针对舆情分析的需求优化查询。 在整个过程中,平台的可扩展性和通用性也非常重要,确保能够适应不同的数据源和分析需求。为此,可以设计合理的数据模型和接口,允许其他系统或应用通过API接入。 推荐进一步深入了解《PYTHON驱动的网易新闻舆情热点分析平台》一文,它详细记录了平台设计与实现的全过程,包括具体的技术选型、系统架构、功能实现以及优化策略等,能够为你的平台构建提供宝贵的参考和实践指南。 参考资源链接:[PYTHON驱动的网易新闻舆情热点分析平台](https://wenku.csdn.net/doc/331yccjn09)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值