恺德技术(西安)有限公司自主研发的“AIx军事仿真平台”以中东油井攻防推演等实战案例为演示场景,实现了从输入使命-生成想定文件-生成对应脚本-实现场景推演的全链路流程
基于离线信息管理(装备数据/概念模型/情报文档),通过检索增强生成(RAG)与大模型微调(SFT)技术,构建四大核心产品(军事大模型一体机、军事知识助手、概念开发助手、仿真分析助手),为用户提供智能化的军事概念开发与仿真工具,如下图所示:
产品架构图
02 基于大模型与Spaceware仿真引擎的
智能仿真系统架构
用户通过自然语言输入任务指令后,大模型智能体需结合场景想定开发思维链COT、垂直领域知识库RAG以及仿真脚本生成微调大模型,生成军事概念文档以及Spaceware仿真引擎的仿真脚本(兼容AFSIM);进一步,在仿真过程中,大模型通过MCP(Model Context Protocol)协议实现与Spaceware仿真引擎的人/大模型在环仿真的深度集成。
****想定文本生成:****大模型需解析任务目标,调用知识库中的规则库,通过思维链生成包含环境、时间轴、参与方策略的想定描述。
****仿真脚本微调:****基于想定文本,大模型需将自然语言文本转换为Spaceware支持的脚本语言。
****大模型在环仿真:****大模型通过MCP协议实现与Spaceware的深度集成,智能解析作战态势,根据作战策略推理下发相应行动指令。
03 基于知识驱动与大模型工流的
军事想定智能生成方法
将军事人员专业的任务场景开发设计知识,转化为大模型思考工作流和提示词,依托军事知识库和大模型智能生成能力,自动化生成专业的军事想定文件。
04 垂直领域知识工程
系统通过多源数据采集模块整合结构化(军事数据库等)、半结构化(体系架构模型等)与非结构化数据(情报文档等);经过知识工程引擎执行数据清洗、特征提取及知识转化操作构建军事语料库;采用知识图谱模块,基于元模型识别战场实体与关系,建立知识图谱网络;采用分级存储架构(向量数据库支持语义检索、图谱数据库实现动态关联、关系数据库保障结构化存储)实现高效查询;大模型训练模块,利用语料库数据进行领域适配的大模型微调训练,支持开源模型集成与仿真脚本增强训练;最终构建从数据治理到智能应用的闭环体系,形成支撑战场决策、装备研发等军事智能化场景的核心能力。
*05 构建军事领域知识动态本体*
*提升知识数据的可交互性*
知识图谱的构建基础是建立适应垂直领域应用的元模型。从元元模型出发,借鉴DoDAF DM2等元模型,结合具体领域知识工程应用需要,构建初始的本体顶层结构;根据本体顶层结构,经过数据采集,数据整合,生成知识图谱。
*06 非结构数据自动化标注*
6.1 *基于机器学习的非结构数据的半自动化标注*
基于大模型的智能标注系统通过多模态数据处理流程,实现非结构化数据向结构化知识的高效转化:首先,利用预训练语言模型构建文本分类引擎,支持主题分类与跨语言归类;其次,集成语义向量编码器与对比学习框架,通过语义相似性判定实现文本重复性检测;同时,部署动态信息抽取管道,基于命名实体识别与关系推理技术提取关键实体。通过多级校验机制,系统输出可直接用于模型训练的高质量结构化数据集,显著提升数据可用性并降低人工标注成本。如下图所示:
基于机器学习的非结构数据的半自动化标注
6.2 未标注数据集
以下是未标注过的数据集的可视化展示:
未标注数据集
6.3 标注数据集
标注数据集
未标注数据集经系统性标注后,通过实体消歧技术建立唯一性约束,并借助知识图谱显性化实体间关系,形成结构化知识网络。
*07 基于知识图谱的武器知识图谱构建*
7.1 结构化数据
结构化数据指的是具有明确的、预定义的数据模型,遵循一致顺序的数据。最为常见的结构化数据是关系型数据库中的数据。
7.2 半结构化数据
半结构化数据是指介于结构化数据和非结构化数据之间,具有一定的结构化特征,但不完全符合结构化特征的数据。最为常见的半结构化数据包括日志文件、XML 文档、JSON 文档、Email、HTML文档等。
融合结构化数据与半结构化数据,通过军事仿真垂直领域语言模型,系统化抽取实体属性并推导关系网络,实现从异构数据到结构化知识图谱的自动化生成。
*08 基于微调大模型的*
*AFSIM仿真脚本生成*
- **1.**SFT(Supervised Fine-Tuning,监督微调)
SFT 是一种在预训练大模型基础上,使用****标注数据****进行微调的技术,使其适应特定任务(如文本分类、问答系统)。
*方法*:全参数微调(调整所有参数)或部分参数微调(如LoRA)。
- *2.LoRA(Low-Rank Adaptation,低秩适应)*
LoRA 是一种****参数高效微调(PEFT)*技术,通过*低秩矩阵分解****减少训练参数量,适用于大模型微调。
*原理*:冻结原始模型权重,仅训练新增的低秩矩阵(A和B),近似模拟全参数微调的效果。 ΔW=BA,其中B∈Rd×r,A∈Rr×k(r≪d,k)。
*优势*:显存占用低(仅调整0.1%-1%参数)、训练速度快、支持多任务插拔式适配
-
*3.QLoRA(Quantized LoRA,量化LoRA)*
QLoRA 是LoRA的升级版,结合****量化技术****进一步降低显存需求,支持在消费级GPU上微调超大模型(如LLaMA-65B)。
****关键技术:****4-bit量化:将预训练模型权重压缩至4位,减少内存占用。双重量化:对量化参数再次量化,提升效率。Paged Optimizers:防止显存溢出。优势:在保持模型性能的同时,显存需求降低至全参数微调的1/10
8.1军事想定文本
军事想定模块:支持交互式修订的智能文本生成系统,允许用户通过注释驱动内容修正,系统实时解析批注语义并动态调整生成路径,结合上下文感知技术实现文本连贯性优化,形成’用户标注-模型迭代’的闭环协作模式。
8.2 交战仿真场景
大模型智能体从文本想定中提取仿真信息,进一步基于仿真脚本微调大模型,生成AFSIM仿真脚本,自动加载到仿真系统构建仿真场景。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。