第六章 二次型(线性代数)(未完成)

第6章 二次型

6.1 二次型及其矩阵

  • 定义 n n n元二次齐次多项式

    • 概念

      • 标准二次型:只有平方项
      • 规范二次型:系数只为 1 , − 1 , 0 1,-1,0 1,1,0的标准二次型
    • 矩阵表达法 f ( X ) = X T A X f(X)=X^TAX f(X)=XTAX

      • 对称矩阵 A = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 . . . a n n ] A=\begin{bmatrix}a_{11}&a_{12}&...&a_{1n} \\ a_{21}&a_{22}&...&a_{2n} \\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&...&a_{nn}\end{bmatrix} A=a11a21an1a12a22an2.........a1na2nann称为二次型 f f f矩阵 f f f称为对称矩阵 A A A二次型 r a n k ( A ) rank(A) rank(A)称为二次型 f f f r a n k ( f ) rank(f) rank(f)

      • 对称矩阵和二次型具有唯一性

      • 标准型 ⟷ \longleftrightarrow 对角阵

      • 构造:非平方项系数除以 2 2 2

      • 标准二次型矩阵: A f = d i a g ( a 11 , a 22 , . . . , a n n ) A_f=diag(a_{11},a_{22},...,a_nn) Af=diag(a11,a22,...,ann) r a n k ( f ) = r a n k ( A f ) rank(f)=rank(A_f) rank(f)=rank(Af).

        规范二次型矩阵: A f = [ E p − E r − p 0 ] A_f=\begin{bmatrix}E_p&&\\&-E_{r-p}&\\&&0\end{bmatrix} Af=EpErp0 r a n k ( f ) = r a n k ( A f ) = r rank(f)=rank(A_f)=r rank(f)=rank(Af)=r.

  • 线性变换(化为标准型) f = X T A X = ( Q Y ) T A ( Q Y ) = Y T Q T A Q Y = Y T B Y f=X^TAX=(QY)^TA(QY)=Y^TQ^TAQY=Y^TBY f=XTAX=(QY)TA(QY)=YTQTAQY=YTBY

    • 正交变换:若能找到 Λ = Q T A Q \Lambda=Q^TAQ Λ=QTAQ,则可将二次型 f f f化为标准型

    • ∣ C ∣ ≠ 0 |C|\ne0 C=0,称为可逆/非退化/满秩替换。若 ∣ C ∣ = 0 |C|=0 C=0,称为退化替换

  • 合同

    • 定义 n n n阶方阵 A , B A,B A,B,若存在可逆矩阵 P P P,使得 B = P T A P B=P^TAP B=PTAP,称为 A ⋍ B A\backsimeq B AB

    • 性质

      1. 反身性 A ⋍ A A\backsimeq A AA

      2. 对称性:若 A ⋍ B A\backsimeq B AB,则 B ⋍ A B\backsimeq A BA

      3. 传递性:若 A ⋍ B A\backsimeq B AB B ⋍ C B\backsimeq C BC,则 A ⋍ C A\backsimeq C AC

      4. 保秩性:若 A ⋍ B A\backsimeq B AB,则 r ( A ) = r ( B ) ∵ r(A)=r(B)\qquad\because r(A)=r(B)左右乘可逆矩阵秩不变

      5. 保号性:若 A ⋍ B A\backsimeq B AB,则 ∣ B ∣ , ∣ A ∣ |B|,|A| B,A同号

      6. 保对称性:若 A ⋍ B A\backsimeq B AB,则 B T = B    ⟺    A T = A B^T=B\iff A^T=A BT=BAT=A

        ∵ B T = ( P T A P ) T = P T A T P = P T A P = B    ⟺    A T = A \because B^T=(P^TAP)^T=P^TA^TP=P^TAP=B\iff A^T=A BT=(PTAP)T=PTATP=PTAP=BAT=A

      7. 可逆性:若 A ⋍ B A\backsimeq B AB A , B A,B A,B可逆,则 B − 1 ⋍ A − 1 B^{-1}\backsimeq A^{-1} B1A1 B T ⋍ A T B^T\backsimeq A^T BTAT

      8. 任一实对称矩阵都合同于一对角阵,即 A T = A , A ˉ = A A^T=A,\bar{A}=A AT=A,Aˉ=A    ⟺    \iff A ⋍ Λ A\backsimeq\Lambda AΛ

      9. 证两实对称矩阵合同,只需证明其二次型具有相同数量的正负惯性指数

  • 三大关系 { 相 似 正 交 相 似 合 同 ⟹ \begin{cases}相似\\正交相似\\合同\end{cases}\Longrightarrow 等价;正交相似 ⟹ { 等 价 相 似 合 同 \Longrightarrow\begin{cases}等价\\相似\\合同\end{cases}

等价 A ≅ B    ⟺    P A Q = B A\cong B\iff PAQ=B ABPAQ=B相似 A ∼ B    ⟺    P − 1 A P = B A\sim B\iff P^{-1}AP=B ABP1AP=B正交相似 A ∼ B A\sim B AB A ⋍ B A\backsimeq B AB    ⟺    P − 1 A P = P T A P = B \iff P^{-1}AP=P^TAP=B P1AP=PTAP=B合同 A ⋍ B    ⟺    P T A P = B A\backsimeq B\iff P^TAP=B ABPTAP=B
条件 A , B A,B A,B矩阵;存在可逆 P , Q P,Q P,Q A , B A,B A,B同阶阵;存在可逆 P P P A , B A,B A,B同阶阵;存在正交 P P P A , B A,B A,B同阶阵;存在可逆 P P P
共同性质保秩性,反身性,对称性,传递性,可逆性同左同左同左
不同性质特征多项式(行列式,特征值,迹,可逆性)相同保号性,保正定,保对称对称性

6.2 化二次型为标准型

  • 配方法:从 x 1 x_1 x1 x n x_n xn,配完一个再搞下一个

    例: 配 方 x 1 2 − 3 x 2 2 + 4 x 3 2 − 2 x 1 x 2 + 2 x 1 x 3 − 6 x 2 x 3 \color{blue}配方x_1^2-3x_2^2+4x_3^2-2x_1x_2+2x_1x_3-6x_2x_3 x123x22+4x322x1x2+2x1x36x2x3
    原 式 = x 1 2 − 2 x 1 ( x 2 − x 3 ) + ( x 2 − x 3 ) 2 − ( x 2 − x 3 ) 2 − 3 x 2 2 + 4 x 3 2 − 6 x 2 x 3 = ( x 1 − x 2 + x 3 ) 2 − ( 4 x 2 2 + 4 x 2 x 3 + x 3 2 ) + x 3 2 + 3 x 3 2 = ( x 1 − x 2 + x 3 ) 2 − ( 2 x 2 + x 3 ) 2 + 4 x 3 2 = y 1 2 − y 2 2 + 4 y 3 2 . 换 为 线 性 变 换 X = C Y 原式=x_1^2-2x_1(x_2-x_3)+(x_2-x_3)^2-(x_2-x_3)^2-3x_2^2+4x_3^2-6x_2x_3\\ =(x_1-x_2+x_3)^2-(4x_2^2+4x_2x_3+x_3^2)+x_3^2+3x_3^2\\ =(x_1-x_2+x_3)^2-(2x_2+x_3)^2+4x_3^2=y_1^2-y_2^2+4y_3^2.\\ 换为线性变换X=CY =x122x1(x2x3)+(x2x3)2(x2x3)23x22+4x326x2x3=(x1x2+x3)2(4x22+4x2x3+x32)+x32+3x32=(x1x2+x3)2(2x2+x3)2+4x32=y12y22+4y32.线X=CY
    例: 配 方 2 x 1 x 2 − 4 x 1 x 3 + 10 x 2 x 3 + 5 x 3 x 4 + x 1 x 4 \color{blue}配方2x_1x_2-4x_1x_3+10x_2x_3+5x_3x_4+x_1x_4 2x1x24x1x3+10x2x3+5x3x4+x1x4
    令 { x 1 = y 1 − y 2 x 2 = y 1 + y 2 x 3 = y 3 x 4 = y 4 令\begin{cases}x_1=y_1-y_2\\x_2=y_1+y_2\\x_3=y_3\\x_4=y_4 \end{cases} x1=y1y2x2=y1+y2x3=y3x4=y4

  • 合同变换法(初等变换法) [ A E ] → [ P T A P E P ] = [ Λ P ] \begin{bmatrix}A\\E\end{bmatrix}\rightarrow\begin{bmatrix}P^TAP\\EP\end{bmatrix}=\begin{bmatrix}\Lambda\\P\end{bmatrix} [AE][PTAPEP]=[ΛP].

    A , E A,E A,E做同样的初等变换,只对 A A A相应的初等变换

    例: 用 合 同 变 换 法 化 f ( X ) = x 1 x 2 + x 1 x 3 − 3 x 2 x 3 为 标 准 型 \color{blue}用合同变换法化f(X)=x_1x_2+x_1x_3-3x_2x_3为标准型 f(X)=x1x2+x1x33x2x3
    二 次 型 f 对 应 矩 阵 为 A = [ 0 1 2 1 2 1 2 0 − 3 2 1 2 − 3 2 0 ] . [ A E ] = [ 0 1 2 1 2 1 2 0 − 3 2 1 2 − 3 2 0 1 0 0 0 1 0 0 0 1 ] → P ( 1 × ( 2 ) + ( 1 ) ) [ 1 1 2 − 1 1 2 0 − 3 2 − 1 − 3 2 0 1 0 0 1 1 0 0 0 1 ] → P ( − 1 2 × ( 1 ) + ( 2 ) ) , P ( 1 × ( 1 ) + ( 3 ) ) [ 1 0 0 0 − 1 4 − 1 0 − 1 − 1 1 − 1 2 1 1 1 2 1 0 0 1 ] → P ( − 1 4 × ( 2 ) + ( 3 ) ) [ 1 0 0 0 − 1 4 0 0 0 3 1 − 1 2 3 1 1 2 − 1 0 0 1 ] = [ P T A P P ] . 故 X = P Y , f ( X ) = g ( Y ) = y 1 2 − 1 4 y 2 2 + 3 y 3 2 . 二次型f对应矩阵为A=\begin{bmatrix}0&{1\over 2}&{1\over 2}\\{1\over 2}&0&-{3\over 2}\\{1\over 2}&-{3\over 2}&0 \end{bmatrix}.\\ \begin{bmatrix}A\\E\end{bmatrix}=\begin{bmatrix}0&{1\over 2}&{1\over 2}\\{1\over 2}&0&-{3\over 2}\\{1\over 2}&-{3\over 2}&0\\1&0&0\\ 0&1&0\\0&0&1\end{bmatrix} \xrightarrow{P(1\times(2)+(1))} \begin{bmatrix}1&{1\over 2}&-1\\{1\over 2}&0&-{3\over 2}\\-1&-{3\over 2}&0\\1&0&0\\ 1&1&0\\0&0&1\end{bmatrix}\\ \xrightarrow{P(-{1\over 2}\times(1)+(2)),P(1\times(1)+(3))} \begin{bmatrix}1&0&0\\0&-{1\over 4}&-1\\0&-1&-1\\1&-{1\over 2}&1\\ 1&{1\over 2}&1\\0&0&1\end{bmatrix} \xrightarrow{P(-{1\over 4}\times(2)+(3))} \begin{bmatrix}1&0&0\\0&-{1\over 4}&0\\0&0&3\\1&-{1\over 2}&3\\ 1&{1\over 2}&-1\\0&0&1\end{bmatrix}=\begin{bmatrix}P^TAP\\P\end{bmatrix}.\\ 故X=PY,f(X)=g(Y)=y_1^2-{1\over 4}y_2^2+3y_3^2. fA=021212102321230.[AE]=021211002102301021230001P(1×(2)+(1)) 1211110210230101230001P(21×(1)+(2)),P(1×(1)+(3)) 100110041121210011111P(41×(2)+(3)) 100110041021210003311=[PTAPP].X=PY,f(X)=g(Y)=y1241y22+3y32.

  • 正交变换法

6.3 正定二次型

标准型不唯一,但标准型的项数表示二次型的秩,是唯一确定的

  • 规范型定义: [ E p − E q 0 n − r ] \begin{bmatrix}E_p&&\\&-E_q&\\&&0_{n-r}\end{bmatrix} EpEq0nr,其中 p p p为正惯性指数, q q q为负惯性指数, r = p + q r=p+q r=p+q为二次型的秩
  • 二次型的分类:设 f ( X ) = X T A X f(X)=X^TAX f(X)=XTAX为二次型, A A A为实对称矩阵
    1. 正定,半正定,负定,半负定
  • 判断二次型的六种方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值