[RL 11] Asynchronous Methods for Deep Reinforcement Learning (A3C) (ICML, 2016)

Asynchronous Methods for Deep Reinforcement Learning (A3C) (ICML, 2016)

1. Introduction

  1. On-line DRL
    1. problems
      1. related samples lead to unstable
    2. solution
      1. ER
        1. only for off-policy alg
        2. resource cost
      2. Asynchronous Methods

4. Asynchronous RL Framework

  1. Design goal
    • train deep neural network policies reliably and without large resource requirements.
  2. Main ideas
    1. asynchronous actor-learners
    2. parallel running(to explorate different parts of envs)
  3. Techs
    1. accumulate gradients
    2. n-step bootstrap
    3. parameters sharing
    4. exploration
      1. different ϵ \epsilon ϵ
      2. entropy for A3C

5. Experiments

  1. Atari
    1. n-step is faster
    2. A3C outperformance others
  2. Scalability (可拓展性)
    • improvement over actors
    • n-step gets more speed up ratio
      • perhaps due to the reduction of bias
  3. Robustness
    • there is usually a range of good learning rate
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值