Graph Learning-Convolutional Networks(GLCN)论文阅读笔记

Graph Learning-Convolutional Networks. CVPR 2019. Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang.

本文在切比雪夫一节近似模型上面提出改进,加入了图学习的过程,改变了传统使用固定图结构的思路,使得数据有了更好的图表示,即用节点之间的概率邻居来代替邻接矩阵。

在这里插入图片描述

论文动机

  1. 一般而言,我们提供给图CNN的数据要么具有已知的固有图结构,如社会网络,要么是我们人为建立的图。然而,对于图CNN中的半监督学习,很难评估从领域知识(例如,社会网络)获得的图或由人建立的图是否是最优的图表示。
  2. 此外,人类建立的图通常对局部噪声和离群点很敏感。

提出方法

针对半监督学习问题,提出了一种新的图学习-卷积网络(GLCN)算法。GLCN的主要思想是通过在统一的网络结构中同时集成图学习图卷积,来学习最适合于图CNN的最优图表示,以用于半监督学习。

Graph Learning-Convolution Network (GLCN) which integrates both graph learning and graph convolution simultaneously in a unified network architecture and thus can learn an adaptive (or optimal) graph representation for GCN learning.

模型实现

1. 相关工作

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.arXiv preprint arXiv:1609.02907, 2016.

一阶近似切比雪夫多项式模型:
在这里插入图片描述
(3)式为交叉熵损失函数, Y i j Y_{ij} Yij为样本真实标签。

2. Graph Learning-Convolutional Network

整个模型分为graph learning layer 和 graph convolution layer 两个部分。

2.1 Graph learning architecture(GL-layer)

在这里插入图片描述给定一个输入 X = ( x 1 , x 2 , ⋯   , x n ∈ R p × n ) X=(x_1, x_2, \cdots, x_n \in \mathbb{R}^{p\times n}) X=(x1,x2,,xnRp×n)要寻找一个非负函数 s i j = g ( x i , x j ) s_{ij}=g(x_i, x_j) sij=g(xi,xj)来表示节点 x i x_i xi和节点 x j x_j xj的邻居结构关系,本文学习图结构 S S S如下,其中 a ∈ R p × 1 a\in \mathbb{R}^{p\times 1} aRp×1为权重向量:
在这里插入图片描述可以看出,经过softmax操作后所学习到的图S满足如下属性,也就是概率的属性,代表节点 x i x_i xi和节点 x j x_j xj成为邻居节点的概率:
∑ j = 1 n S i j = 1 , S i j ≥ 0 (5) \sum_{j=1}^nS_{ij}=1,S_{ij}\geq0 \tag{5} j=1nSij=1,Sij0(5)通过下面的损失函数来优化权重向量 a a a
在这里插入图片描述其中, ∥ x i − x j ∥ 2 \Vert x_i -x_j\Vert_2 xixj2为欧氏距离,其越大 S i j S_{ij} Sij越小。
如果初始图结构A可以用,则可以将他融入到下面的学习式子里面:
在这里插入图片描述还可以通过在学习损失函数中考虑正则项来合并A的信息:
在这里插入图片描述由于当 p p p很大时, a a a是一个很长的向量,会导致运算复杂度变得很高,为了解决这个问题,考虑将 a a a投影到低维子空间进行运算,即通过单层低维嵌入网络实现这一点,定义一个投影矩阵 P ∈ R p × d , d < p P \in \mathbb{R}^{p\times d},d<p PRp×d,d<p,从而新的学习式子为:
在这里插入图片描述
其中 A A A为初始图,若A不存在,则可以将设置 A i j = 1 A_{ij}=1 Aij=1
从而损失函数变为:
在这里插入图片描述总结:提出的图学习(GL)结构可以仅基于数据特征X或进一步结合先前的初始图A和X来自动建立数据的邻域结构。图学习结构实际上提供了一种非线性函数 S = G G L ( X , A ; P , a ) S=\mathcal{G}_{GL}(X,A;P,a) S=GGL(X,A;P,a)来预测/计算节点对之间的邻域概率。

2.2 GLCN architecture(graph convolutional layers)

GLCN的目标是为GCN网络学习最优的图表示,并同时集成图学习和图卷积,以提高各自的性能。在卷积层,根据图学习层返回的自适应邻域图S进行分层传播规则,即
在这里插入图片描述由于学习图 S S S满足 ∑ j S i j = 1 , S i j ≥ 0 \sum_jS_{ij}=1, S_{ij}\geq0 jSij=1,Sij0,因此上式可以简化为:
在这里插入图片描述对于半监督分类任务,将最终感知器层定义为:
在这里插入图片描述
通过最小化以下损失函数来联合训练整个网络参数 Θ = { p , a , W ( 0 ) , ⋯   , W ( K ) } \Theta=\{p,a,W^{(0)},\cdots,W^{(K)}\} Θ={p,a,W(0),,W(K)}在这里插入图片描述这里, L G L \mathcal{L}_{GL} LGL L S e m i − G L C N \mathcal{L}_{Semi-GLCN} LSemiGLCN分别在(11)和(3)式中被定义。

3. 整体模型

在这里插入图片描述

参考文献

原文地址: https://arxiv.org/pdf/1811.09971v1.pdf
参考博客: https://blog.csdn.net/qq_35111325/article/details/93378317

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值