Masked Graph Convolution Network
文章目录
1 提出问题
-
一般直觉:连接的数据样本往往是相似的。
-
标签传播直觉:相邻的节点通常具有相似的标签,这个直觉通常有效。
提出问题:相邻的数据样本在属性方面是否相似?
引出本文观点:事实上,相邻的节点只有某一部分属性相似。Maked GCN 不是直接传播每个节点中的所有属性,而是只将其属性的一部分传播给邻居。要传播的属性的选择是通过向每个节点分配mask来实现的。通过联合考虑局部和全局信息来学习mask,即属性在局部邻域中的分布及其对分类结果的影响。
2 文章贡献
- 从传播的角度对传统的基于属性图的半监督分类(traditional attribute-graph based semi-supervised classification )和图卷积神经网络(GCNNs)进行了分析,并将其分为对称传播和非对称传播两类( symmetric and asymmetric propagations)。
- 标签传播的一般假设不能满足属性传播的实际需要,只需传播部分属性。
- 提出了一种满足属性传播要求的掩码图卷积网络(Masked GCN),其通过学习每个节点的掩码向量(mask vecotr)来满足属性传播的要求。
2.1 标签传播和属性传播
- 标签传播(label propagation):传统的基于属性图的半监督分类(AGSS)方法将给定的标签传播到由输入特征构建的图上,以预测未标记的数据样本。
- 属性传播(attribute propagation):GCNNs以真实的图拓扑以及给定的特征和标签作为输入。然后,根据图拓扑对节点属性进行平滑,并根据平滑后的属性预测目标节点。
通过深入的类比,AGSS方法和GCNNs都可以从传播的角度进行解释,并可分为两类:
-
对称传播(symmetric propagations):GCN、PR-GCN和标签扩散(LS)算法都是基于对称归一化图拉普拉斯函数最小化目标函数,从而导致对称传播。
由于在GCN,PR-GCN,LS的传播权重都是 w i j d i d j , w i j = w j i \frac{w_{ij}}{\sqrt{d_i d_j}},w_{ij}=w_{ji} didjwij,wij=wji, 所以是对称传播。
-
非对称传播:GAT和标签传播(LP)算法以原始图拉普拉斯函数为基础最小化目标函数,导致非对称传播。
基于属性图的传统标签传播算法与GCNNs的比较如下表所示:
2.2 GCNNs的分析和总结
-
GCN [Kipf and Welling,2017]
这里, H G C N ( 0 ) = X H_{GCN}^{(0)}=X HGCN(0)=X,将最后一层送入到FC layer Q G C N = H G C N W Q_{GCN}=H_{GCN}W QGCN=HGCNW,参数W是通过最小化给定标签和预测之间的交叉熵来获得的,如下所示
-
PageRank GCN [Klicpera,2019年]
由于GCN等效于平滑拉普拉斯图中的属性,因此随着迭代次数(即图卷积层的数量)的增加,所有节点往往获得相同的属性。为了缓解这个问题PageRank GCN(PR-GCN)通过考虑GCN与PageRank的关系来改进原来的GCN。PageRank GCN中的卷积运算符定义为:
-
GAT
3 Masked Graph Convolutional Network
-
动机:连接的节点的只有某些属性是相似的。
-
公式化介绍
目标函数:
每个节点属性的更新公式:
mask vector的每一个元素的计算:
预测节点label的softmax层:
论文链接