无外力矩情况下的刚体旋转

如果系统不受外力矩,则总角动量是常数,刚体的旋转动能也是常数。
把角动量矢量 H \boldsymbol{H} H按照本体组坐标系 B \mathcal{B} B进行展开
H = B H = H 1 b ^ 1 + H 2 b ^ 2 + H 3 b ^ 3 (1) \boldsymbol{H}=^{\mathcal{B}} \boldsymbol{H}=H_{1} \hat{\boldsymbol{b}}_{1}+H_{2} \hat{\boldsymbol{b}}_{2}+H_{3} \hat{\boldsymbol{b}}_{3}\tag{1} H=BH=H1b^1+H2b^2+H3b^3(1)

注意到 H ˙ \dot{\boldsymbol{H}} H˙是相对于惯性坐标系 N \mathcal{N} N的导数。因为 H ˙ = 0 \dot{\boldsymbol{H}}=0 H˙=0,因此只有在 N \mathcal{N} N坐标系下看去,角动量矢量才是0。因此,在 B \mathcal{B} B坐标系下,矢量 H \boldsymbol{H} H不是常数,而是会变化。因此, B \mathcal{B} B下的矢量分量 H i H_{i} Hi是时变的。然而, H \boldsymbol{H} H的模长在所有坐标系中都是常数。
下面假定坐标系 B \mathcal{B} B与惯性主轴重合,因此惯性矩阵是对角阵。角动量矢量可以写为
H = B H = B ( H 1 H 2 H 3 ) = B ( I 1 ω 1 I 2 ω 2 I 3 ω 3 ) (2) H=^{B} \boldsymbol{H}=^{B}\left(\begin{array}{l} H_{1} \\ H_{2} \\ H_{3} \end{array}\right)=^{\mathcal{B}}\left(\begin{array}{l} I_{1} \omega_{1} \\ I_{2} \omega_{2} \\ I_{3} \omega_{3} \end{array}\right) \tag{2} H=BH=BH1H2H3=BI1ω1I2ω2I3ω3(2)

因为角动量的模是常数,因此所有可能的角速度矢量必须在如下动量椭球的表面上
H 2 = H T H = I 1 2 ω 1 2 + I 2 2 ω 2 2 + I 3 2 ω 3 2 (3) H^{2}=\boldsymbol{H}^{T} \boldsymbol{H}=I_{1}^{2} \omega_{1}^{2}+I_{2}^{2} \omega_{2}^{2}+I_{3}^{2} \omega_{3}^{2} \tag{3} H2=HTH=I12ω12+I22ω22+I32ω32(3)

同时因为动能也是常数,因此角速度也必须在如下能量椭球的表面
T = 1 2 I 1 ω 1 2 + 1 2 I 2 ω 2 2 + 1 2 I 3 ω 3 2 (4) T=\frac{1}{2} I_{1} \omega_{1}^{2}+\frac{1}{2} I_{2} \omega_{2}^{2}+\frac{1}{2} I_{3} \omega_{3}^{2} \tag{4} T=21I1ω12+21I2ω22+21I3ω32(4)

因此,对于无外力矩刚体,角速度必须满足以上两个等式。相应的几何解释就是, ω ( t ) \omega(t) ω(t)必须在角动量椭球和能量椭球的交线上。
为便于上述椭球交线的可视化,将椭球按照 B \mathcal{B} B坐标系角动量矢量分量 H i H_i Hi来表示, 而不是用角速度分量 ( ω i ) (\omega_i) (ωi)。当利用 H i H_i Hi作为独立的坐标分量,则动量椭球变成动量球。
H 2 = H 1 2 + H 2 2 + H 3 2 (5) H^{2}=H_{1}^{2}+H_{2}^{2}+H_{3}^{2} \tag{5} H2=H12+H22+H32(5)

能量椭球变为:
1 = H 1 2 2 I 1 T + H 2 2 2 I 2 T + H 3 2 2 I 3 T (6) 1=\frac{H_{1}^{2}}{2 I_{1} T}+\frac{H_{2}^{2}}{2 I_{2} T}+\frac{H_{3}^{2}}{2 I_{3} T} \tag{6} 1=2I1TH12+2I2TH22+2I3TH32(6)

其中, 2 I i T \sqrt{2} I_{i} T 2 IiT是对应的半轴。
以上两个椭球的交线形成了可能的 ω ( t ) \omega(t) ω(t)的轨迹。很明显,对于一个给定的 ∣ H ∣ |\boldsymbol{H}| H,动能肯定存在一个取值范围。当下讨论 ∣ H ∣ |\boldsymbol{H}| H的模长为常数时,动能的取值范围。同时假定转动惯量 I i I_i Ii满足
I 1 ≥ I 2 ≥ I 3 (7) I_{1} \geq I_{2} \geq I_{3} \tag{7} I1I2I3(7)

根据上述的转动惯量顺序,能量椭球最大的半轴 2 I 1 T \sqrt{2} I_{1} T 2 I1T对应于 b ^ 1 \hat{\boldsymbol{b}}_{1} b^1轴,能量椭球最小的半轴对应于 b ^ 3 \hat{\boldsymbol{b}}_{3} b^3轴,如下图所示。

公式(6)表明 T T T的变化将会按比例放大或缩小能量椭球,然而其整体形状和各方面比例保持不变。
有三种特殊的能量情形:由于动能椭球和动量椭球必须相交, T T T所能取到的最小值是使得最大半轴等于 H = ∣ H ∣ H=|\boldsymbol{H}| H=H。在这种情况下,动量椭球完美包裹了能量椭球。二者唯一的交点是
B H = ± H b ^ 1 (8) ^{\mathcal{B}} \boldsymbol{H}=\pm H \hat{\boldsymbol{b}}_{1} \tag{8} BH=±Hb^1(8)

因此,对于最小动能的情形,刚体 B \mathcal{B} B绕着最大的惯性主轴 b ^ 1 \hat{\boldsymbol{b}}_{1} b^1进行纯旋转,对应的动能为
T m i n = H 2 2 I 1 (9) T_{\mathrm{min}}=\frac{H^{2}}{2 I_{1}} \tag{9} Tmin=2I1H2(9)

进一步增大 T T T,则下一个特殊的情况是能量椭球的中间半轴等于 H H H。两个椭球的交线被称为sepratrix。任何沿着sepratrix的运动其动能为:
T int  = H 2 2 I 2 (10) T_{\text {int }}=\frac{H^{2}}{2 I_{2}} \tag{10} Tint =2I2H2(10)

注意:当刚体绕着中间惯性主轴 b ^ 2 \hat{\boldsymbol{b}}_{2} b^2进行纯旋转时,任何小的扰动都会引起"翻滚"。
当动能进一步增大到其最大的情况,动能椭球完美地包裹动量球。这个最大的动能
T max ⁡ = H 2 2 I 3 (11) T_{\max }=\frac{H^{2}}{2 I_{3}} \tag{11} Tmax=2I3H2(11)

对应于最小惯性主轴 b ^ 3 \hat{\boldsymbol{b}}_{3} b^3的纯旋转,因为两个球的仅有的交点是
B H = ± H b ^ 3 (12) ^{B} \boldsymbol{H}=\pm H \hat{\boldsymbol{b}}_{3} \tag{12} BH=±Hb^3(12)
动能椭球与动量球交线的特殊情况
对于刚体运动一般情况,一旦确定了初始的动能 T T T和角动量矢量 H \boldsymbol{H} H,角速度矢量 ω \boldsymbol{\omega} ω理论上将会永远按照某个特定的交线运动。这是在不考虑能量耗散的情况。当然,现实中这是不可能的。
下图显示了不同能量情况的交线族。

下面研究绕着最小惯量主轴 b ^ 3 \hat{\boldsymbol{b}}_{3} b^3旋转的情况。对于给定的角动量,这对应着最大能量的情况。随着能量耗散,能量椭球减小,刚体将会围绕着最小主轴 b ^ 3 \hat{\boldsymbol{b}}_{3} b^3摇摆。一段时间过后,角速度矢量 ω ( t ) \omega(t) ω(t)将会和sepratrix相交,刚体开始绕着最大主轴 b ^ 1 \hat{\boldsymbol{b}}_{1} b^1摇摆。最后,当能量级别到达最小能量椭球,刚体将会绕着 b ^ 1 \hat{\boldsymbol{b}}_{1} b^1进行纯旋转。因此,当考虑能量耗散时,只有绕着最大惯量主轴的旋转才是稳定的。绕着 b ^ 3 \hat{\boldsymbol{b}}_{3} b^3的纯旋转将会变得不稳定。
如果刚体近似绕着最大主轴 b ^ 1 \hat{\boldsymbol{b}}_{1} b^1自旋,那么角速度 ω ( t ) \omega(t) ω(t)将会绕着 b ^ 1 \hat{\boldsymbol{b}}_{1} b^1 H 1 H_{1} H1逆时针旋转。如果刚体近似绕着最小主轴 b ^ 3 \hat{\boldsymbol{b}}_{3} b^3自旋,那么角速度 ω ( t ) \omega(t) ω(t)将会绕着 b ^ 1 \hat{\boldsymbol{b}}_{1} b^1 H 3 H_{3} H3顺时针旋转。
下面考虑两种特殊情况 I 1 = I 2 I_1=I_2 I1=I2以及 I 1 = I 2 = I 3 I_1=I_2=I_3 I1=I2=I3
对于 I 1 = I 2 I_1=I_2 I1=I2,根据欧拉公式
I 11 ω ˙ 1 = − ( I 33 − I 22 ) ω 2 ω 3 + L 1 I 22 ω ˙ 2 = − ( I 11 − I 33 ) ω 3 ω 1 + L 2 I 33 ω ˙ 3 = − ( I 22 − I 11 ) ω 1 ω 2 + L 3 (13) \begin{array}{l} I_{11} \dot{\omega}_{1}=-\left(I_{33}-I_{22}\right) \omega_{2} \omega_{3}+L_{1} \\ I_{22} \dot{\omega}_{2}=-\left(I_{11}-I_{33}\right) \omega_{3} \omega_{1}+L_{2} \\ I_{33} \dot{\omega}_{3}=-\left(I_{22}-I_{11}\right) \omega_{1} \omega_{2}+L_{3} \end{array} \tag{13} I11ω˙1=(I33I22)ω2ω3+L1I22ω˙2=(I11I33)ω3ω1+L2I33ω˙3=(I22I11)ω1ω2+L3(13)

可得 ω ˙ 3 = 0 \dot{\omega}_{3}=0 ω˙3=0,因此 ω 3 ( t ) = ω 3 ( t 0 ) \omega_{3}(t)=\omega_{3}\left(t_{0}\right) ω3(t)=ω3(t0)是常数。因此,能量椭球在 H 1 H_1 H1 H 2 H_2 H2方向上有相同的半轴。在这种情况下,交线是围绕 H 3 H_3 H3的圆轨迹。因为 I 1 = I 2 > I 3 I_{1}=I_{2}>I_{3} I1=I2>I3,角速度 ω ( t ) \omega(t) ω(t)以顺时针方向绕着 H 3 H_3 H3旋转。
在动量球的赤道平面上,在动量球的赤道平面 ( H 1 , H 2 ) (H_1,H_2) (H1,H2)上有一种特殊的运动形式。注意到此时 H 3 = ω 3 = 0 H_3=\omega_3=0 H3=ω3=0,同时对于轴对称物体有
ω 3 ( t ) = ω 3 ( t 0 ) = 0 (14) \omega_3(t)=\omega_3(t_0)=0 \tag{14} ω3(t)=ω3(t0)=0(14)

同时,根据欧拉方程,可得在此情形下
ω 3 ( t ) = ω 3 ( t 0 ) = 0 (15) \omega_{3}(t)=\omega_{3}\left(t_{0}\right)=0 \tag{15} ω3(t)=ω3(t0)=0(15)

这说明如果 ω 3 = 0 \omega_3=0 ω3=0,那么 ω 1 \omega_1 ω1 ω 1 \omega_1 ω1都是常数。这些常值角速度就是动量球赤道上的点。
对于 I 1 = I 2 = I 3 I_1=I_2=I_3 I1=I2=I3的情况,根据欧拉方程,有
ω ˙ 1 = ω ¨ 2 = ω ¨ 3 = 0 (16) \dot{\omega}_{1}=\ddot{\omega}_{2}=\ddot{\omega}_{3}=0 \tag{16} ω˙1=ω¨2=ω¨3=0(16)

因此,所有的 ω i \omega_i ωi都是常数。从几何角度来看,这表明能量椭球变成与动量椭球一模一样的球。因此,球上的每一个离散的点都是两个球的交线。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值