B.无量纲化

0.引言

要想无量纲化一个方程,必须先确定方程涉及到的基本量纲。
Buckingham π \pi π定理表明,
无 量 纲 参 数 个 数 = 有 参 数 个 数 − 基 本 量 纲 无量纲参数个数=有参数个数-基本量纲 =

1.例子

  下面用单摆问题作为例子来说明:
m l θ ¨ + c l θ ˙ + m g sin ⁡ θ = F 0 cos ⁡ ω t (1) m l \ddot{\theta}+c l \dot{\theta}+m g \sin \theta=F_{0} \cos \omega t\tag{1} mlθ¨+clθ˙+mgsinθ=F0cosωt(1)

基本量纲是时间( t t t),长度( l l l)和质量( m m m)。1==角 θ \theta θ用弧度表示是无量纲的,因为弧度是两个长度的比值。==因此有量纲的量总共有6个 m , l , c , g , F 0 m, l, c, g, F_{0} m,l,c,g,F0 ω \omega ω。根据 π \pi π定理,应该有不超过 6 − 3 = 3 6-3=3 63=3个无量纲参数。
  由于方程的每一项量纲必须相同,由式(1)的第一项可知,每一项的量纲都是 m l / t 2 m l / t^{2} ml/t2。由此可以反算 c c c的量纲是 m / t m / t m/t
  定义自然频率为 ω 0 = g / l \omega_{0}=\sqrt{g / l} ω0=g/l ,则方程可以化为
θ ¨ + c m θ ˙ + ( ω 0 2 ) sin ⁡ θ = F 0 m l cos ⁡ ω t (2) \ddot{\theta}+\frac{c}{m} \dot{\theta}+\left(\omega_{0}^{2}\right) \sin \theta=\frac{F_{0}}{m l} \cos \omega t\tag{2} θ¨+mcθ˙+(ω02)sinθ=mlF0cosωt(2)各参数的单位为 [ c m ] = 1 / t , [ ω 0 ] = 1 / t , [ F 0 m l ] = 1 / t 2 , [ ω ] = 1 / t \left[\frac{c}{m}\right]=1 / t, \quad\left[\omega_{0}\right]=1 / t, \quad\left[\frac{F_{0}}{m l}\right]=1 / t^{2}, \quad[\omega]=1 / t [mc]=1/t,[ω0]=1/t,[mlF0]=1/t2,[ω]=1/t

现在有4个有量纲参数和一个基本量纲 t t t因此需要一个时间尺度,把时间 t t t也无量纲化。不失一般性,令时间尺度为 t ∗ t_{*} t,则无量纲时间为 τ = t / t ∗ \tau=t / t_{*} τ=t/t
  将以下公式 d / d t = ( d τ / d t ) d / d τ = t ∗ − 1 d / d τ d / d t=(d \tau / d t) d / d \tau=t_{*}^{-1} d / d \tau d/dt=(dτ/dt)d/dτ=t1d/dτ

d 2 / d t 2 = t ∗ − 2 d 2 / d τ 2 d^{2} / d t^{2}=t_{*}^{-2} d^{2} / d \tau^{2} d2/dt2=t2d2/dτ2代入式(2)中,重新整理,得 d 2 θ d τ 2 + c t ∗ m d θ d τ + ω 0 2 t ∗ 2 sin ⁡ θ = F 0 t ∗ 2 m l cos ⁡ ( ω t ∗ τ ) (3) \frac{d^{2} \theta}{d \tau^{2}}+\frac{c t_{*}}{m} \frac{d \theta}{d \tau}+\omega_{0}^{2} t_{*}^{2} \sin \theta=\frac{F_{0} t_{*}^{2}}{m l} \cos \left(\omega t_{*} \tau\right)\tag{3} dτ2d2θ+mctdτdθ+ω02t2sinθ=mlF0t2cos(ωtτ)(3)

  在式(3)的基础上选择合适的 t ∗ t_{*} t可以将(3)继续化为 d 2 θ d τ 2 + α d θ d τ + sin ⁡ θ = γ cos ⁡ β τ \frac{d^{2} \theta}{d \tau^{2}}+\alpha \frac{d \theta}{d \tau}+\sin \theta=\gamma \cos \beta \tau dτ2d2θ+αdτdθ+sinθ=γcosβτ α d 2 θ d τ 2 + d θ d τ + sin ⁡ θ = γ cos ⁡ β τ \alpha \frac{d^{2} \theta}{d \tau^{2}}+\frac{d \theta}{d \tau}+\sin \theta=\gamma \cos \beta \tau αdτ2d2θ+dτdθ+sinθ=γcosβτ的无量纲形式。(式(3)和式(4)的参数定义不同)


  1. 牛不是基本单位,是导出单位。由 F = m a F=ma F=ma可知, N = 1 k g ⋅ m / s 2 \mathrm{N}=1 \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2} N=1kgm/s2 ↩︎

好的,我会尽力回答您的问题。首先,根据题意,我们可以将原方程进行无量纲化。设特征长度为λ,回旋频率为ω,特征速度为v0,则有: x' = x / λ t' = ωt v' = v / v0 E' = E / E0 B' = B / B0 m' = m / m0 将上式代入原方程,得到: (dv'/dt') = (qE' + qv'B') / m' 其中, E' = E0sin(kx' - wt') B' = B0Bz m' = m0 将上式写成向量形式,即: (dv1/dt1) = (q/m) * E1 (dv2/dt2) = (q/m) * E2 (dv3/dt3) = (q/m) * E3 其中, v1 = v',v2 = v',v3 = v' t1 = t',t2 = t',t3 = t' E1 = E0sin(kx' - wt'),E2 = 0,E3 = B0Bz 然后,我们可以使用四阶龙格-库塔方法来求解上述方程。具体步骤如下: 1. 初始化变量 v1 = v2 = v3 = 0 t = 0 dt = 0.001 n = 10000 2. 迭代求解 for i = 1:n k1 = dt * (q/m) * E1 l1 = dt * v1 k2 = dt * (q/m) * (E1 + 0.5*k1) l2 = dt * (v1 + 0.5*l1) k3 = dt * (q/m) * (E1 + 0.5*k2) l3 = dt * (v1 + 0.5*l2) k4 = dt * (q/m) * (E1 + k3) l4 = dt * (v1 + l3) v1 = v1 + (1/6) * (k1 + 2*k2 + 2*k3 + k4) t = t + dt end 3. 绘制离子能量随时间变化曲线图 根据能量守恒定律,离子的总能量为: Etotal = 0.5 * m * v^2 + q * E0 * λ * cos(wt) 因此,离子的能量随时间的变化曲线可以通过计算离子速度的平方和余弦函数的乘积来得到。具体代码如下: Etotal = 0.5 * m * (v1.^2 + v2.^2 + v3.^2) + q * E0 * lambda * cos(w*t); plot(t, Etotal); 这样,我们就可以得到离子能量随时间的变化曲线图了。注意,在计算过程中需要选择合适的无量纲化参数,以保证计算的精度和计算速度。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值