空间系统的分析力学
恋日
这个作者很懒,什么都没留下…
展开
-
刚体有限转动的交换定理
在参考空间做定坐标系OxyzOxyzOxyz,同时有动坐标系Ox′y′z′Ox^{\prime}y^{\prime}z^{\prime}Ox′y′z′。空间中有一个向量r\boldsymbol{r}r,在两个坐标系下的分量满足如下公式r′=A1rr^{\prime}=A_{1}rr′=A1r其中A1A_{1}A1称为OxyzOxyzOxyz到Ox′y′z′Ox^{\prime}y^{\pr...原创 2020-03-23 18:02:31 · 1293 阅读 · 0 评论 -
椭圆积分函数和雅各比椭圆函数
椭圆积分函数 函数u=F(φ,k)=∫0φdx1−k2sin2x=∫0sinφdx(1−t2)(1−kt2)u=F(\varphi, k)=\int_{0}^{\varphi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}=\int_{0}^{sin{\varphi} }\frac{\mathrm{d} x}{\sqrt{(1-t^{2})(...原创 2020-03-13 14:32:54 · 7894 阅读 · 2 评论 -
欧拉-潘索运动
两个椭球无力矩状态下的刚体绕质心的惯性运动被称为欧拉情形。根据动量守恒和能量守恒定律,相对质心OOO的角动量模长以及动能均为常数,即ω⋅J⋅ω=2T=const(J⋅ω)2=L2=const(1)\begin{aligned}\boldsymbol{\omega} \cdot \boldsymbol{J} \cdot \boldsymbol{\omega} &=2 T=\mathrm...原创 2020-03-12 16:04:37 · 1435 阅读 · 1 评论 -
刚体的质量几何
系统对轴的惯性矩 设PνP_{\nu}Pν点到某个轴uuu的距离等于ρν\rho_{\nu}ρν,称Ju=∑ν=1Nmνρν2(1)J_{u}=\sum_{\nu=1}^{N} m_{\nu} \rho_{\nu}^{2}{\tag1}Ju=ν=1∑Nmνρν2(1)是系统相对于uuu的惯性矩。可见,当系统为刚体时,系统对于 相对刚体固定的轴 的惯性矩是固定的,不随坐标系的选取...原创 2020-03-11 16:32:18 · 1103 阅读 · 0 评论 -
质点系的角动量与角动量定理
质点系的角动量考察由nnn个质点组成的质点系,设质点系中质点PiP_iPi的质量为mim_{i}mi,相对于惯性坐标系原点OOO点的矢径为ri\boldsymbol{r}_{i}ri,速度为vi=dri/dt\boldsymbol{v}_{i}=\mathrm{d} \boldsymbol{r}_{i} / \mathrm{d} tvi=dri/dt,则质点系对点OOO的角动量为定义为...原创 2020-03-06 02:03:14 · 7152 阅读 · 0 评论 -
无外力矩情况下的刚体旋转
如果系统不受外力矩,则总角动量是常数,刚体的旋转动能也是常数。把角动量矢量H\boldsymbol{H}H按照本体组坐标系B\mathcal{B}B进行展开H=BH=H1b^1+H2b^2+H3b^3(1)\boldsymbol{H}=^{\mathcal{B}} \boldsymbol{H}=H_{1} \hat{\boldsymbol{b}}_{1}+H_{2} \hat{\boldsym...原创 2020-02-29 03:36:52 · 1060 阅读 · 0 评论