7.相图

0. 引言

  由两个关于 x 1 x_1 x1, x 2 x_2 x2的一阶微分方程组成的微分方程系统能用相图进行可视化表示。其中, x x x轴代表 x 1 x_1 x1 y y y轴代表 x 2 x_2 x2。相图上的每一条曲线对应于一个不同的初始条件,也可以被视为一个位于( x 1 x_1 x1, x 2 x_2 x2)的点以 ( x ˙ 1 , x ˙ 2 ) \left(\dot{x}_{1}, \dot{x}_{2}\right) (x˙1,x˙2)的速度运动的轨迹。
  对于2乘2的系统 x ˙ = A x \dot{\mathrm{x}}=\mathrm{Ax} x˙=Ax,点 x = ( 0 , 0 ) x=(0,0) x=(0,0)被称为平衡点不动点。因为如果 x x x在初始时刻位于平衡点,则会一直处于平衡点。平衡点的稳定性与特征方程的特征值有关,决定了相图的走势。
  对于有两个相异实特征值的情况:当特征值的正负号相同,则平衡点为结点。同为负,则平衡点被称为稳定结点。同为正,则被称为不稳定结点。一正一负,则平衡点被称为鞍点
  如果特征值是共轭复数,则平衡点被称为螺旋。如果特征值的实部是负数,则解会呈指数衰减,平衡点是稳定螺旋。如果特征值的实部是正数,则解会呈指数增长,平衡点是不稳定螺旋

1.结点

  考察系统
x ˙ 1 = − 3 x 1 + 2 x 2 , x ˙ 2 = 2 x 1 − 2 x 2 \dot{x}_{1}=-3 x_{1}+\sqrt{2} x_{2}, \quad \dot{x}_{2}=\sqrt{2} x_{1}-2 x_{2} x˙1=3x1+2 x2,x˙2=2 x12x2

特征值和特征向量为
λ 1 = − 4 , v 1 = ( 1 − 2 / 2 ) ; λ 2 = − 1 , v 2 = ( 1 2 ) \lambda_{1}=-4, \quad \mathrm{v}_{1}=\left(\begin{array}{c} 1 \\ -\sqrt{2} / 2 \end{array}\right) ; \quad \lambda_{2}=-1, \quad \mathrm{v}_{2}=\left(\begin{array}{c} 1 \\ \sqrt{2} \end{array}\right) λ1=4,v1=(12 /2);λ2=1,v2=(12 )
则通解可以写成
x ( t ) = c 1 v 1 e λ 1 t + c 2 v 2 e λ 2 t \mathbf{x}(t)=c_{1} v_{1} e^{\lambda_{1} t}+c_{2} v_{2} e^{\lambda_{2} t} x(t)=c1v1eλ1t+c2v2eλ2t

因为 λ 1 < 0 \lambda_1<0 λ1<0 λ 2 < 0 \lambda_2<0 λ2<0,则解会随着时间衰减,并且当 t → ∞ t \rightarrow \infty t时衰减到平衡点 x → ( 0 , 0 ) x \rightarrow(0,0) x(0,0)。这就是为什么说结点是稳定的。(同理,当特征值都大于0时,结点不稳定。)
  当 c 2 = 0 c_2=0 c2=0时,解 x ( t ) x(t) x(t)是标量函数乘以特征向量 v 1 v_1 v1。由于解永远和 v 1 v_1 v1成比例,因此当 c 2 = 0 c_2=0 c2=0时解的轨迹肯定在直线 x 2 = − 2 x 1 / 2 x_2=-\sqrt{2 x_{1} / 2} x2=2x1/2 ,且箭头指向平衡点。同理,当 c 1 = 0 c_1=0 c1=0时,解的轨迹肯定在直线 x 1 = 2 x 1 / 2 x_1=\sqrt{2 x_{1} / 2} x1=2x1/2 ,箭头指向平衡点。方程的解可以看成以上两个解的线性组合。
  由于 ∣ λ 1 ∣ > ∣ λ 2 ∣ \left|\lambda_{1}\right|>\left|\lambda_{2}\right| λ1>λ2因此在 v 1 v_1 v1方向的衰减快。反应到相图里,就是轨迹沿着 v 2 v_2 v2方向接近平衡点。(因为 v 1 v_1 v1方向早已经衰减没了)

2. 鞍点

  对于系统
x ˙ 1 = x 1 + x 2 , x ˙ 2 = 4 x 1 + x 2 \dot{x}_{1}=x_{1}+x_{2}, \quad \dot{x}_{2}=4 x_{1}+x_{2} x˙1=x1+x2,x˙2=4x1+x2

其特征值和特征向量为
λ 1 = − 1 , v 1 = ( 1 − 2 ) ; λ 2 = 3 , v 2 = ( 1 2 ) \lambda_{1}=-1, \quad \mathrm{v}_{1}=\left(\begin{array}{r} 1 \\ -2 \end{array}\right) ; \quad \lambda_{2}=3, \quad \mathrm{v}_{2}=\left(\begin{array}{l} 1 \\ 2 \end{array}\right) λ1=1,v1=(12);λ2=3,v2=(12)

通解为 x ( t ) = c 1 v 1 e λ 1 t + c 2 v 2 e λ 2 t \mathbf{x}(t)=c_{1} \mathrm{v}_{1} e^{\lambda_{1} t}+c_{2} \mathrm{v}_{2} e^{\lambda_{2} t} x(t)=c1v1eλ1t+c2v2eλ2t  因为 λ 1 < 0 \lambda_1<0 λ1<0,在第一个特征向量 v 1 v_1 v1方向上轨迹指向平衡点, λ 2 > 0 \lambda_2>0 λ2>0,在第二个特征向量 v 2 v_2 v2方向上轨迹远离平衡点。因此除了沿着 v 1 v_1 v1的轨迹,其它轨迹都随着时间 t → ∞ t \rightarrow \infty t ∣ x ( t ) ∣ → ∞ |x(t)| \rightarrow \infty x(t)。因此这个鞍点是不稳定鞍点

3.螺旋点

  对于系统
x ˙ 1 = − 1 2 x 1 + x 2 , x ˙ 2 = − x 1 − 1 2 x 2 (1) \dot{x}_{1}=-\frac{1}{2} x_{1}+x_{2}, \quad \dot{x}_{2}=-x_{1}-\frac{1}{2} x_{2}\tag{1} x˙1=21x1+x2,x˙2=x121x2(1)
  其特征值为复数
λ = − 1 2 + i , v = ( 1 i ) \lambda=-\frac{1}{2}+i, \quad \mathrm{v}=\left(\begin{array}{l} 1 \\ i \end{array}\right) λ=21+i,v=(1i)与其复共轭。其通解为
x ( t ) = e − t / 2 [ A ( cos ⁡ t − sin ⁡ t ) + B ( sin ⁡ t cos ⁡ t ) ] \mathbf{x}(t)=e^{-t / 2}\left[A\left(\begin{array}{r} \cos t \\ -\sin t \end{array}\right)+B\left(\begin{array}{c} \sin t \\ \cos t \end{array}\right)\right] x(t)=et/2[A(costsint)+B(sintcost)]
其轨迹是以平衡点为中心的螺旋。如果 Re ⁡ { λ } < 0 \operatorname{Re}\{\lambda\}<0 Re{λ}<0,则螺旋向平衡点旋。如果 Re ⁡ { λ } > 0 \operatorname{Re}\{\lambda\}>0 Re{λ}>0,则螺旋由平衡点向外旋。
(:如果不考虑前面的指数项,则轨迹是个圆。)
  螺旋是顺时针还是逆时针可以根据式(1)计算点 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)处的导数来判断。例如本题中选择 ( x 1 , x 2 ) = ( 0 , 1 ) (x_1,x_2)=(0,1) (x1,x2)=(0,1),则由式(1)知相图中该点的导数为 ( x ˙ 1 , x ˙ 2 ) = ( 1 , − 1 / 2 ) \left(\dot{x}_{1}, \dot{x}_{2}\right)=(1,-1 / 2) (x˙1,x˙2)=(1,1/2),说明该点要朝其右下方运动,因此是顺时针。

4.耦合震荡(两个二阶方程组成的系统)(略)

求解如下微分方程
m d 2 d t 2 ( x 1 x 2 ) = ( − ( k + K ) K K − ( k + K ) ) ( x 1 x 2 ) m \frac{d^{2}}{d t^{2}}\left(\begin{array}{l} x_{1} \\ x_{2} \end{array}\right)=\left(\begin{array}{cc} -(k+K) & K \\ K & -(k+K) \end{array}\right)\left(\begin{array}{l} x_{1} \\ x_{2} \end{array}\right) mdt2d2(x1x2)=((k+K)KK(k+K))(x1x2)

要用到normal modes的知识

  • 5
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值