【翻译论文】SEMANTIC3D.NET: A NEW LARGE-SCALE POINT CLOUD CLASSIFICATION BENCHMARK(2017)
SEMANTIC3D.NET:新的大规模点云分类基准
T Hackel,N Savinov,L Ladicky,Wegner, Jan D,K Schindler,M Pollefeys
DOI:10.5194/isprs-annals-IV-1-W1-91-2017
文章目录
摘要:
本文提出了一个新的 3D 点云分类基准数据集,其中包含超过 40 亿个手动标记点,作为数据密集型(深度)学习方法的输入。我们还讨论了使用深度卷积神经网络 (CNN) 作为工作马的基准测试的首次提交,它已经显示出与最先进技术相比显着的性能改进。 CNN 已成为计算机视觉和机器学习中许多任务(如图像中的语义分割或对象检测)的事实上的标准,但由于缺乏训练数据,尚未导致 3D 点云标记任务的真正突破。借助本文中提供的海量数据集,我们旨在缩小这一数据差距,以帮助释放深度学习方法在 3D 标记任务中的全部潜力。我们的语义 3D.net 数据集由使用静态地面激光扫描仪获取的密集点云组成。它包含8个语义类,涵盖了广泛的城