文章目录
- 概述
- 1. 当下的 Agent,究竟卡在哪里?
- 2. 什么是 Agent Skills?
- 3. 核心机制:渐进式披露(Progressive Disclosure)
- 4. Skills 与工具调用、RAG、MCP 有何不同?
- 5. Skill 范式的工程价值:从个人效率到组织级资产
- 6. 如何从零开始写一个 Skill?
- 7. 安全与治理:技能其实是一种「软件包」
- 8. Skills 的未来:从人写技能,到 Agent 自己长技能
- 9. 写在最后:给今天就在用 LLM 的工程师一些建议
- Claude Skills × OpenAI Function Calling × Spring AI Tools × MCP 对照表
- Anthropic Agent Skills / AI Agents 延伸阅读合集

概述
过去两年,Agent 成了生成式 AI 场景里的头号热门词:从自动写代码、跑流水线,到帮你看文档、写邮件,几乎所有团队都在造各式各样的 Agent。
但现实很骨感:Demo 惊艳,上线翻车;单个场景勉强可用,换个任务就「智商在线、业务不行」。越来越多人发现,问题不在于「Agent 不够聪明」,而在于它们缺少可以沉淀和复用的「技能」。
2025 年,Anthropic 把这种直觉正式产品化:Agent Skills——一个以「文件夹」为基本单位的技能系统,并公开喊话:“不要再到处造新的 Agent,而是给一个通用 Agent 装上可组合的 Skills。”

接下来我们就从工程视角拆开这个新范式:它到底解决了什么问题,具体怎么工作,和 MCP / 工具调用 / RAG 有什么不同,开发者在实践中该如何落地。
1. 当下的 Agent,究竟卡在哪里?
从开发体验看,今天主流的 Agent 搭建方式大致有三类路线:
- Prompt 工程 + 一些工具调用
通过长 System Prompt + 指令模板,把模型「调教」成一个 Agent,再给它挂上若干工具(搜索、数据库、脚本执行等)。 - 工作流编排 / Orchestration
例如用各种 Agent 框架,把复杂任务拆成多节点、多 Agent 的有向图,节点间传递中间结果。 - 针对场景微调 / RAG
用特定领域数据做检索增强,或者定制微调,使 Agent 在某个垂直领域更专业。
这些方案看似不同,本质却有共性的问题:
-
知识与流程都「糊」在 Prompt / 代码里,难以复用与版本管理。
一个好用的 Agent,往往是 Prompt、工具选择、调用策略和业务约束的混合体,很难拆成独立、可移植的组件。 -
上下文是一次性、易遗忘的。
模型再「聪明」,没有结构化的程序性记忆,依然像一个刚入职、啥都得现问的实习生:每次任务都要重新讲一遍 SOP。 -
缺乏统一抽象,生态难以形成。
不同团队、不同框架的 Agent 互不兼容,很难像 App 一样被分享、组合和「安装」。
Anthropic 的判断是:继续堆更复杂的 Agent 结构,很难治本;真正缺的是一种能被模型理解、被工程体系管理、又能跨项目复用的「技能载体」。
2. 什么是 Agent Skills?

Anthropic 给出的定义高度务实:
一个 Skill,本质上就是一个文件夹(目录),里面装着让 Agent 完成某类任务所需的所有「操作说明 + 工具脚本 + 资源」。
典型的 Skill 目录结构大致如下:
my-skill/
SKILL.md # 必选:技能说明与元数据
scripts/ # 可选:可执行脚本(bash / python / …)
templates/ # 可选:各类模板(文档、代码片段等)
resources/ # 可选:参考文件(示例、规范、数据字典等)
其中:
SKILL.md是大脑入口:
里面以结构化 Markdown 写明技能的用途、适用场景、关键步骤、输入输出格式、注意事项等,同时包含模型用来检索与触发该技能的元数据(name、description、tags 等)。scripts提供「可执行动作」:
比如 PDF 解析、Excel 操作、批量重命名、调用内部 API 的封装脚本等。模型不需要记住细节,只要知道「调用哪个脚本完成这一步」。- 其他资源作为补充记忆:
模板、规约、案例,用来保证输出风格与公司标准一致。
换句话说:Skill 是一种“人类可读 + 机器可执行”的工作说明书,既不是纯 Prompt,也不是黑箱 API,而是介于两者之间的一种「程序化知识包」。
3. 核心机制:渐进式披露(Progressive Disclosure)
如果把大量业务流程都写进 Skill,显然会遇到一个经典问题:上下文爆炸。
Anthropic 的解决方案是「分层加载」——渐进式披露:
可以粗略理解为三个层次:
-
Level 1:元数据常驻(Metadata)
- 每个 Skill 的名称、简短描述、标签会被放进 Agent 的系统提示或一个轻量索引中。
- Agent 在接到任务时,先在这层做「哪几个技能可能相关?」的快速筛选。
-
Level 2:说明按需加载(Instructions)
- 当 Agent 判断某个 Skill 适配当前任务,就通过类似
bash/ 文件访问接口读取对应的SKILL.md具体内容。 - 此时,详细步骤、边界条件、格式要求才被带入上下文。
- 当 Agent 判断某个 Skill 适配当前任务,就通过类似
-
Level 3:资源与脚本再按需调用(Resources & Code)
- 若说明里引用了脚本或资源,Agent 会在需要时再去执行脚本或读取文件,而不是一次性塞进上下文。
- 代码在模型外执行,结果以结构化输出回传,更稳定也更省 Token。
这种设计有两个直接好处:
- 上下文成本可控、可扩展:
可以挂很多 Skill,但大部分时间只占用极少上下文空间。 - 技能可以变得很「长」,而不会拖垮性能:
复杂流程也可以详细写清楚,反而提高执行稳定性和可解释性。
从工程视角看,这更像是把「Prompt 工程」拆成了一个个可独立存储、按需加载的文件,而不是永远堆在系统提示里。
4. Skills 与工具调用、RAG、MCP 有何不同?
很多工程师第一反应是:「这不就是条件化加载的长 Prompt + 工具脚本吗?」
差别在于:Anthropic 把这套实践上升成了一个统一抽象与生态接口。
可以用一张表来粗对比:
| 方案 | 核心抽象 | 主要作用 | 典型问题 | Skills 的关系 |
|---|---|---|---|---|
| 传统工具调用 | 工具 / API | 执行具体动作(算、查、调接口) | 不包含流程与业务语义 | Skill 内可以封装对工具的调用方式 |
| RAG | 知识库 + 检索 | 提供事实知识与上下文 | 缺少「怎么做」的流程指引 | Skill 的说明部分可引用 RAG 结果 |
| MCP / 插件 | 第三方服务能力 | 接入外部系统功能 | 接口统一但行为语义分散 | Skills 更偏「工作说明书」,MCP 是「外部 API」 |
| Agent Skills | 文件夹 + SKILL.md + 脚本 | 打包特定任务的完整操作流程与工具 | 需要最佳实践与生态沉淀 | 与以上方案互补而非替代 |
关键区别在于:
- 工具调用偏「能做什么」;Skill 更强调「应该怎么做」。
Skill 把调用哪些工具、按照什么顺序调用、怎样判断成功、如何兜底等都写清楚。 - RAG 解决「知道什么」,Skill 解决「怎么干」。
一个财务分析 Skill 可以用 RAG 查政策和历史报表,但流程和输出格式由 Skill 固定。 - MCP / 插件是「通向外部世界的门」,Skill 则像「操作手册 + 自动操作者」。
两者可以组合:Skill 里定义如何调用 MCP,什么时候调用,输入输出如何转换。
从开发者视角,这意味着:你不需要在 Agent 代码里把所有细节写死,而是把大量「如何完成某类任务」迁移到可版本化的 Skill 目录中。
5. Skill 范式的工程价值:从个人效率到组织级资产
如果只把 Skills 看成「高级 Prompt 模板」,就低估了它的工程意义。更有价值的,是它在知识工程与组织资产管理上的作用。
5.1 面向个体:「第二大脑」的可编程化
对个人开发者和独立工程师来说,Skills 提供了一种组织个人经验的方式:
- 把自己在「代码重构」「写技术 RFC」「评审 PR」「写测试用例」上的套路,拆成一个个 Skill。
- 日常只要告诉 Agent「按 X Skill 帮我处理这个 PR」,而不是一次次解释个人偏好和边界条件。
长远看,这相当于为自己搭了一层「可执行的工作习惯」,而不是一堆散落在各处的 Prompt 片段。
5.2 面向团队:把 SOP 变成「可执行程序」
在企业场景,更有杀伤力的是把传统意义上的 SOP / 手册 / Wiki,系统性地转成 Skills:
- 合规审批流程 Skill
包含合规检查要点、必填字段、风险项列表、升级路径与拒绝模板。 - 内部数据分析 Skill
封装数据源连接、指标定义、常用 SQL 模板与可视化配置。 - 品牌内容审核 Skill
根据品牌手册、禁用词、审查标准进行自动审核和修订建议。
这样做有几个收益:
- 新人或非技术员工可以「直接用」,而不是「先看 30 页文档再来问」。
- 知识更新可以在 Skill 层完成,一次修改,全体 Agent 生效。
- 知识资产可以跨团队、跨项目流通,形成真正的「组织级复用」。
在这个视角下,Skill 更接近「组织记忆的代码化形式」。
6. 如何从零开始写一个 Skill?
Anthropic 在官方文档和 GitHub 仓库里给出了多个示例与最佳实践,可以抽象出一套通用方法论。
6.1 选一个足够窄但高频的任务
好 Skill 的起点是「一个定义清晰、边界明确、日常高频」的任务,而不是一句模糊的「帮我做增长分析」。例如:
- 「根据 Jira 任务,生成本周迭代汇总邮件」
- 「把一堆发票 PDF 整理成标准报销表 Excel」
- 「按公司文案规范重写产品更新日志」
让 Skill 去覆盖一个可度量的、可验证的输出,有助于迭代。
6.2 把人类的做法拆成结构化步骤
观察一个熟练员工怎么做这件事,然后抽象成步骤:
- 输入与前置条件检查
- 信息收集 / 检索
- 处理与决策逻辑
- 结果生成与格式化
- 质量检查与错误处理
把这些写进 SKILL.md,并用清晰标题、列表、示例和「Do / Don’t」形式呈现,模型更容易遵循。
6.3 决定哪些步骤应当「外包给脚本」
不是所有事情都该在模型里「硬算」。典型适合放进 scripts/ 的包括:
- 解析与生成复杂文件格式(Excel、PDF、PPT、二进制日志)。
- 重复性强的结构化转换(数据清洗、字段映射)。
- 调用内部 API、执行 Shell 命令等需要确定性与安全控制的操作。
在 SKILL.md 里,只需要写清「在第 N 步调用 xxx 脚本,输入格式为 X,输出格式为 Y」,以及如何根据脚本输出判断下一步。
6.4 用「示例 + 评估标准」固化预期
Skill 需要自带「什么叫做好结果」的定义,可以包含:
- 正例 / 反例片段(注意避免敏感数据)。
- 打分准则:例如合规性、完整性、风格一致性等。
- 常见错误与对应修正策略。
这不仅帮助模型,更方便人类回顾和迭代 Skill 本身。
7. 安全与治理:技能其实是一种「软件包」
由于 Skill 可以挂脚本、读写文件甚至访问网络,它在安全和合规上的地位,更接近一个软件包,而不是一段无害的 Prompt。
几个必须重视的点:
- 来源可信与代码审计:
和安装第三方包一样,Skill 仓库也有供应链风险。需要有白名单、签名或内部审核流程。 - 最小权限原则:
Skill 内脚本应只访问完成任务必需的资源,避免一把钥匙开全公司门的局面。 - 执行与日志:
对脚本执行进行日志记录,便于溯源与事后审计。 - 敏感数据脱敏与隔离环境:
在需要处理敏感数据的 Skill 中采用沙箱、脱敏或专用环境,避免无意扩散。
总结起来:把 Skill 当软件工程,而不是当 Prompt 玩具。
8. Skills 的未来:从人写技能,到 Agent 自己长技能
目前大部分 Skill 仍由人类设计和维护,但 Anthropic 在演讲和文章中都明确提到:希望未来的 Agent 能够主动总结自己的成功经验,抽象成新的 Skill。
可能的演进方向包括:
- Agent 在重复完成某类任务后,自动归纳出一套稳定流程,并生成草稿版
SKILL.md。 - 人类只需做最后的审核与微调,而不必从零撰写。
- 多个 Agent 之间可以共享 Skills,形成类似「技能市场 / 技能 App Store」。
从这一点看,Skills 更像是为下一阶段的「自我改进型 Agent」打地基:
当 Agent 能够通过 Skills 记录和重用自己的经验时,才真正具备持续成长的「程序性记忆」。
9. 写在最后:给今天就在用 LLM 的工程师一些建议
如果你已经在生产环境使用 LLM / Agent,这里有几条非常务实的建议,可作为迁移到 Skill 范式的起点:
- 先选一个痛点明显的高频任务,做一个 POC Skill,而不是一口气重构所有 Agent。
- 把现有长 System Prompt 和散落的 SOP、工具说明整理进 Skill 目录,逐步「解耦」逻辑与 Agent 代码。
- 为团队设定简单的 Skill 规范:命名、目录结构、文档模板、评估方法。
- 在安全上,把 Skill 当「内部软件包」看待,建立代码审查和权限控制。
从长远看,「一个强大的通用 Agent + 一个不断增长的 Skill 仓库」,比无数孤立、不可维护的垂直 Agent 更有机会成为企业的长期基础设施。
Claude Skills × OpenAI Function Calling × Spring AI Tools × MCP 对照表
| 维度 | Claude Skills | OpenAI Function Calling | Spring AI Tools / Functions | MCP (Model Context Protocol) |
|---|---|---|---|---|
| 核心定位 | Agent 的“技能系统” | 模型调用函数的接口能力 | Java 世界的 Tool / Function 抽象 | Agent 能力的运行时协议 |
| 抽象层级 | 高(Agent 行为层) | 低(模型 API 层) | 中(应用框架层) | 很高(跨系统基础设施层) |
| 能力单位 | Skill(带语义、上下文、执行逻辑) | Function(结构化输入输出) | Tool / Function(Java 方法) | Server / Capability |
| 谁定义能力 | Agent / 开发者 | 开发者 | 开发者 | 外部系统 / 服务 |
| 谁决定调用 | Agent(模型自主) | 模型(在 prompt 约束下) | 模型 + 应用框架 | Agent(通过协议发现) |
| 是否支持能力发现 | ✅ 原生支持 | ❌ 不支持 | ⚠️ 有限(代码级) | ✅ 核心设计目标 |
| 是否支持动态更新 | ✅(Skills Catalog) | ❌ | ⚠️(需重启 / 配置) | ✅(Runtime 动态) |
| 是否强调上下文管理 | ✅ 极强(Skill = Context) | ❌ 几乎没有 | ⚠️ 由应用控制 | ✅ 明确协议级支持 |
| 是否跨语言 / 跨进程 | ⚠️ 偏 Anthropic 生态 | ❌ API 级 | ⚠️ JVM 为主 | ✅ 原生跨语言 |
| 是否面向 Agent 时代 | ✅ 完全为 Agent 设计 | ❌ 仍是 LLM 时代产物 | ⚠️ 向 Agent 过渡 | ✅ 为 Agent 原生 |
| 典型使用场景 | 复杂自治 Agent | 结构化工具调用 | Java 业务系统接 AI | 企业级 Agent 基础设施 |
Anthropic Agent Skills / AI Agents 延伸阅读合集
官方与核心资料
-
Equipping Agents for the Real World with Agent Skills
https://www.anthropic.com/engineering/equipping-agents-for-the-real-world-with-agent-skills -
Anthropic Agent Skills 官方 GitHub
https://github.com/anthropics/skills -
Tracing Thoughts in Language Models
https://www.anthropic.com/research/tracing-thoughts-language-model -
Disrupting AI Espionage
https://www.anthropic.com/news/disrupting-AI-espionage
技术解读 / 博客文章
-
Anthropic Released Agent Skills – 深度解读
https://www.rohan-paul.com/p/anthropic-released-agent-skills-a -
Teaching AI Agents Real-World Skills(Joshua Berkowitz)
https://joshuaberkowitz.us/blog/github-repos-8/teaching-ai-agents-real-world-skills-anthropic-s-revolutionary-skills-framework-1773 -
Anthropic Says: Build Skills, Not Agents
https://www.outcomeops.ai/blogs/anthropic-says-build-skills-not-agents -
BDTechTalks:Anthropic Agent Skills
https://bdtechtalks.com/2025/10/20/anthropic-agent-skills/amp/ -
Towards AI Newsletter – TAI #175
https://newsletter.towardsai.net/p/tai-175-anthropics-agent-skills-offers -
LinkedIn 技术解读(Ilnar Shafigullin)
https://www.linkedin.com/posts/ilnar-shafigullin-ph-d-b3456356_equipping-agents-for-the-real-world-with-activity-7384679452787658752-W5GT -
LinkedIn Pulse – TAI #175
https://www.linkedin.com/pulse/tai-175-anthropics-agent-skills-offers-z6vde -
今日头条中文解读
https://www.toutiao.com/article/7581769941976711718/
视频资源(演讲 / 访谈 / 解析)
-
YouTube:Agent Skills 解析
https://www.youtube.com/watch?v=CEvIs9y1uog -
YouTube:Anthropic Agent Skills 讨论
https://www.youtube.com/watch?v=Ihoxov5x66k -
YouTube:Agent Skills 深度拆解
https://www.youtube.com/watch?v=pbVTMlGSSYo -
YouTube:AI 能力与认知讨论
https://www.youtube.com/watch?v=WC5S4cXI5WQ -
YouTube:AI 思维与意识探讨
https://www.youtube.com/watch?v=WgzkkCDxYc0
讨论 / 观点 / 社区
-
Reddit:Agent Skills 是不是“换皮工具”?
https://www.reddit.com/r/Anthropic/comments/1phrhs2/agent_skills_am_i_missing_something_or_is_it_just/ -
Reddit:AI 意识相关讨论
https://www.reddit.com/r/Futurology/comments/1lb1quw/chinese_scientists_find_first_evidence_that_ai/ -
AI Frontiers:AI Consciousness 的证据
https://ai-frontiers.org/articles/the-evidence-for-ai-consciousness-today -
Facebook(SCMP):AI 认知能力讨论
https://www.facebook.com/scmp/posts/it-provides-new-evidence-in-a-debate-over-the-cognitive-capacity-of-ai-models-li/1105036791672372/

1364

被折叠的 条评论
为什么被折叠?



